Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/13050
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeyer, Karinen
dc.date.accessioned2013-07-19T15:14:00Z-
dc.date.issued2013-
dc.identifier.citationJournal of Animal Breeding and Genetics, 130(4), p. 270-285en
dc.identifier.issn1439-0388en
dc.identifier.issn0931-2668en
dc.identifier.urihttps://hdl.handle.net/1959.11/13050-
dc.description.abstractEstimates of covariance matrices for numerous traits are commonly obtained by pooling results from a series of analyses of subsets of traits. A penalized maximum-likelihood approach is proposed to combine estimates from part analyses while constraining the resulting overall matrices to be positive definite. In addition, this provides the scope for 'improving' estimates of individual matrices by applying a penalty to the likelihood aimed at borrowing strength from their phenotypic counterpart. A simulation study is presented showing that the new method performs well, yielding unpenalized estimates closer to results from multivariate analyses considering all traits, than various other techniques used. In particular, combining results for all sources of variation simultaneously minimizes deviations in phenotypic estimates if sampling covariances can be approximated. A mild penalty shrinking estimates of individual covariance matrices towards their sum or estimates of canonical eigenvalues towards their mean proved advantageous in most cases. The method proposed is flexible, computationally undemanding and provides combined estimates with good sampling properties and is thus recommended as alternative to current methods for pooling.en
dc.languageenen
dc.publisherWiley-Blackwell Verlag GmbHen
dc.relation.ispartofJournal of Animal Breeding and Geneticsen
dc.titleA penalized likelihood approach to pooling estimates of covariance components from analyses by partsen
dc.typeJournal Articleen
dc.identifier.doi10.1111/jbg.12004en
dc.subject.keywordsAnimal Breedingen
dc.subject.keywordsStatistical Theoryen
dc.subject.keywordsQuantitative Genetics (incl Disease and Trait Mapping Genetics)en
local.contributor.firstnameKarinen
local.subject.for2008070201 Animal Breedingen
local.subject.for2008010405 Statistical Theoryen
local.subject.for2008060412 Quantitative Genetics (incl Disease and Trait Mapping Genetics)en
local.subject.seo2008830399 Livestock Raising not elsewhere classifieden
local.subject.seo2008970107 Expanding Knowledge in the Agricultural and Veterinary Sciencesen
local.profile.schoolAnimal Genetics and Breeding Uniten
local.profile.emailkmeyer@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20130308-16559en
local.publisher.placeGermanyen
local.format.startpage270en
local.format.endpage285en
local.identifier.scopusid84880511589en
local.peerreviewedYesen
local.identifier.volume130en
local.identifier.issue4en
local.contributor.lastnameMeyeren
dc.identifier.staffune-id:kmeyeren
local.profile.roleauthoren
local.identifier.unepublicationidune:13259en
dc.identifier.academiclevelAcademicen
local.title.maintitleA penalized likelihood approach to pooling estimates of covariance components from analyses by partsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorMeyer, Karinen
local.uneassociationUnknownen
local.identifier.wosid000321752200004en
local.year.published2013en
local.subject.for2020300305 Animal reproduction and breedingen
local.subject.for2020490509 Statistical theoryen
local.subject.for2020310506 Gene mappingen
local.subject.seo2020280101 Expanding knowledge in the agricultural, food and veterinary sciencesen
Appears in Collections:Animal Genetics and Breeding Unit (AGBU)
Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

4
checked on Jan 18, 2025

Page view(s)

2,380
checked on Jul 21, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.