Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/6687
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChakraborty, Mrinalen
dc.contributor.authorJin, Kyoung Jooen
dc.contributor.authorGlover, Stephenen
dc.contributor.authorNovak, Michaelen
dc.date.accessioned2010-10-11T16:02:00Z-
dc.date.issued2010-
dc.identifier.citationThe Journal of Organic Chemistry, 75(15), p. 5296-5304en
dc.identifier.issn1520-6904en
dc.identifier.issn0022-3263en
dc.identifier.urihttps://hdl.handle.net/1959.11/6687-
dc.description.abstractThe 4-(benzothiazol-2-yl)phenylnitrenium ion 11 is generated from hydrolysis or photolysis of O-acetoxy-N-(4-(benzothiazol-2-yl)phenyl)hydroxylamine 8, a model metabolite of 2-(4-aminophenyl) benzothiazole 1 and its ring-substituted derivatives that are being developed for a variety of medicinal applications, including antitumor, antibacterial, antifungal, and imaging agents. Previously, we showed that 11 had an aqueous solution lifetime of 530 ns, similar to the 560 ns lifetime of the 4-biphenylylnitrenium ion 12 derived from the well-known chemical carcinogen 4-aminobiphenyl. We now show that the analogy between these two cations extends well beyond their lifetimes. The initial product of hydration of 11 is the quinolimine 16, which can be detected as a long-lived reactive intermediate that hydrolyzes in a pH-dependent manner into the final hydrolysis product, the quinol 15. This hydrolysis behavior is equivalent to that previously described for a large number of ester metabolites of carcinogenic arylamines, including 4-aminobiphenyl. The major azide trapping product (90% of azide products) of 11, 20, is generated by substitution on the carbons 'ortho' to the nitrenium ion center of 11. This product is a direct analogue of the major azide adducts, such as 22, generated from trapping of the nitrenium ions of carcinogenic arylamines. The azide/solvent selectivity for 11, 'kaz/ks', is also nearly equivalent to that of 12. A minor product of the reaction of 11 with N₃‾, 21, contains no azide functionality but may be generated by a process in which N₃‾ attacks 11 at the nitrenium ion center with loss of N₂ to generate a diazene 25 that subsequently decomposes into 21 with loss of another N₂. The adduct derived from attack of 20-deoxyguanosine (d-G) on 11, 28, is a familiar C-8 adduct of the type generated from the reaction of d-G with a wide variety of arylnitrenium ions derived from carcinogenic arylamines. The rate constant for reaction of d-G with 11, kd-G, is very similar to that observed for the reaction of d-G with 12. The similar lifetimes and chemical reactivities of 11 and 12 can be rationalized by B3LYP/6-31G(d) calculations on the two ions that show that they are of nearly equivalent stability relative to their respective hydration products. The calculations also help to rationalize the different regiochemistry observed for the reaction of N₃‾ with 11 and its oxenium ion analogue, 13. Since 8 is the likely active metabolite of 1 and a significant number of derivatives of 1 are being developed as pharmaceutical agents, the similarity of the chemistry of 11 to that of carcinogenic arylnitrenium ions is of considerable importance. Consideration should be given to this chemistry in continued development of pharmaceuticals containing the 2-(4-aminophenyl) benzothiazole moiety.en
dc.languageenen
dc.publisherAmerican Chemical Societyen
dc.relation.ispartofThe Journal of Organic Chemistryen
dc.titleCharacterization of 4-(Benzothiazol-2-yl)phenylnitrenium Ion from a Putative Metabolite of a Model Antitumor Drugen
dc.typeJournal Articleen
dc.identifier.doi10.1021/jo101275yen
dc.subject.keywordsTheoretical and Computational Chemistryen
dc.subject.keywordsMolecular Medicineen
dc.subject.keywordsBiologically Active Moleculesen
dc.subject.keywordsPhysical Organic Chemistryen
local.contributor.firstnameMrinalen
local.contributor.firstnameKyoung Jooen
local.contributor.firstnameStephenen
local.contributor.firstnameMichaelen
local.subject.for2008030505 Physical Organic Chemistryen
local.subject.for2008030405 Molecular Medicineen
local.subject.for2008030799 Theoretical and Computational Chemistry not elsewhere classifieden
local.subject.for2008030401 Biologically Active Moleculesen
local.subject.seo2008920102 Cancer and Related Disordersen
local.profile.schoolChemistryen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolChemistryen
local.profile.emailsglover@une.edu.auen
local.profile.emailnovakm@muohio.eduen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20101011-155554en
local.publisher.placeUnited States of Americaen
local.format.startpage5296en
local.format.endpage5304en
local.identifier.scopusid77955125412en
local.peerreviewedYesen
local.identifier.volume75en
local.identifier.issue15en
local.contributor.lastnameChakrabortyen
local.contributor.lastnameJinen
local.contributor.lastnameGloveren
local.contributor.lastnameNovaken
dc.identifier.staffune-id:sgloveren
local.profile.orcid0000-0002-9344-8669en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:6847en
dc.identifier.academiclevelAcademicen
local.title.maintitleCharacterization of 4-(Benzothiazol-2-yl)phenylnitrenium Ion from a Putative Metabolite of a Model Antitumor Drugen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorChakraborty, Mrinalen
local.search.authorJin, Kyoung Jooen
local.search.authorGlover, Stephenen
local.search.authorNovak, Michaelen
local.uneassociationUnknownen
local.identifier.wosid000280398100046en
local.year.published2010en
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

26
checked on Mar 16, 2024

Page view(s)

998
checked on Mar 9, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.