Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/6684
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nguyen, Vu | en |
dc.contributor.author | Blumenstein, Michael | en |
dc.contributor.author | Muthukkumarasamy, Vallipuram | en |
dc.contributor.author | Leedham, Graham | en |
dc.date.accessioned | 2010-10-08T14:19:00Z | - |
dc.date.issued | 2007 | - |
dc.identifier.citation | Proceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), v.2, p. 734-738 | en |
dc.identifier.isbn | 0769528228 | en |
dc.identifier.issn | 1520-5363 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/6684 | - |
dc.description.abstract | As a biometric, signatures have been widely used to identify people. In the context of static image processing, the lack of dynamic information such as velocity, pressure and the direction and sequence of strokes has made the realization of accurate off-line signature verification systems more challenging as compared to their on-line counterparts. In this paper, we propose an effective method to perform off-line signature verification based on intelligent techniques. Structural features are extracted from the signature's contour using the Modified Direction Feature (MDF) and its extended version: the Enhanced MDF (EMDF). Two neural network-based techniques and Support Vector Machines (SVMs) were investigated and compared for the process of signature verification. The classifiers were trained using genuine specimens and other randomly selected signatures taken from a publicly available of 3840 genuine signatures from 160 volunteers and 4800 targeted forged signatures. A distinguishing error rate (DER) of 17.78% was obtained with the SVM whilst keeping the false acceptance rate for random forgeries (FARR) below 0.16% | en |
dc.language | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.relation.ispartof | Proceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) | en |
dc.title | Off-line Signature Verification Using Enhanced Modified Direction Features in Conjunction with Neural Classifiers and Support Vector Machines | en |
dc.type | Conference Publication | en |
dc.relation.conference | ICDAR 2007: 9th International Conference on Document Analysis and Recognition | en |
dc.identifier.doi | 10.1109/ICDAR.2007.192 | en |
dc.subject.keywords | Pattern Recognition and Data Mining | en |
dc.subject.keywords | Image Processing | en |
dc.subject.keywords | Computer Vision | en |
local.contributor.firstname | Vu | en |
local.contributor.firstname | Michael | en |
local.contributor.firstname | Vallipuram | en |
local.contributor.firstname | Graham | en |
local.subject.for2008 | 080104 Computer Vision | en |
local.subject.for2008 | 080106 Image Processing | en |
local.subject.for2008 | 080109 Pattern Recognition and Data Mining | en |
local.subject.seo2008 | 810199 Defence not elsewhere classified | en |
local.subject.seo2008 | 810107 National Security | en |
local.subject.seo2008 | 890299 Computer Software and Services not elsewhere classified | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | cleedham@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20100421-140947 | en |
local.date.conference | 23rd - 26th September, 2007 | en |
local.conference.place | Curitiba, Brazil | en |
local.publisher.place | United States of America | en |
local.format.startpage | 734 | en |
local.format.endpage | 738 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 2 | en |
local.contributor.lastname | Nguyen | en |
local.contributor.lastname | Blumenstein | en |
local.contributor.lastname | Muthukkumarasamy | en |
local.contributor.lastname | Leedham | en |
dc.identifier.staff | une-id:cleedham | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:6844 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Off-line Signature Verification Using Enhanced Modified Direction Features in Conjunction with Neural Classifiers and Support Vector Machines | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.relation.url | http://www98.griffith.edu.au/dspace/bitstream/10072/17596/1/49943_1.pdf | en |
local.conference.details | ICDAR 2007: 9th International Conference on Document Analysis and Recognition, Curitiba, Brazil, 23rd - 26th September, 2007 | en |
local.search.author | Nguyen, Vu | en |
local.search.author | Blumenstein, Michael | en |
local.search.author | Muthukkumarasamy, Vallipuram | en |
local.search.author | Leedham, Graham | en |
local.uneassociation | Unknown | en |
local.year.published | 2007 | en |
local.date.start | 2007-09-23 | - |
local.date.end | 2007-09-26 | - |
Appears in Collections: | Conference Publication |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
966
checked on Mar 9, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.