Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/6684
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNguyen, Vuen
dc.contributor.authorBlumenstein, Michaelen
dc.contributor.authorMuthukkumarasamy, Vallipuramen
dc.contributor.authorLeedham, Grahamen
dc.date.accessioned2010-10-08T14:19:00Z-
dc.date.issued2007-
dc.identifier.citationProceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), v.2, p. 734-738en
dc.identifier.isbn0769528228en
dc.identifier.issn1520-5363en
dc.identifier.urihttps://hdl.handle.net/1959.11/6684-
dc.description.abstractAs a biometric, signatures have been widely used to identify people. In the context of static image processing, the lack of dynamic information such as velocity, pressure and the direction and sequence of strokes has made the realization of accurate off-line signature verification systems more challenging as compared to their on-line counterparts. In this paper, we propose an effective method to perform off-line signature verification based on intelligent techniques. Structural features are extracted from the signature's contour using the Modified Direction Feature (MDF) and its extended version: the Enhanced MDF (EMDF). Two neural network-based techniques and Support Vector Machines (SVMs) were investigated and compared for the process of signature verification. The classifiers were trained using genuine specimens and other randomly selected signatures taken from a publicly available of 3840 genuine signatures from 160 volunteers and 4800 targeted forged signatures. A distinguishing error rate (DER) of 17.78% was obtained with the SVM whilst keeping the false acceptance rate for random forgeries (FARR) below 0.16%en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.ispartofProceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)en
dc.titleOff-line Signature Verification Using Enhanced Modified Direction Features in Conjunction with Neural Classifiers and Support Vector Machinesen
dc.typeConference Publicationen
dc.relation.conferenceICDAR 2007: 9th International Conference on Document Analysis and Recognitionen
dc.identifier.doi10.1109/ICDAR.2007.192en
dc.subject.keywordsPattern Recognition and Data Miningen
dc.subject.keywordsImage Processingen
dc.subject.keywordsComputer Visionen
local.contributor.firstnameVuen
local.contributor.firstnameMichaelen
local.contributor.firstnameVallipuramen
local.contributor.firstnameGrahamen
local.subject.for2008080104 Computer Visionen
local.subject.for2008080106 Image Processingen
local.subject.for2008080109 Pattern Recognition and Data Miningen
local.subject.seo2008810199 Defence not elsewhere classifieden
local.subject.seo2008810107 National Securityen
local.subject.seo2008890299 Computer Software and Services not elsewhere classifieden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcleedham@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20100421-140947en
local.date.conference23rd - 26th September, 2007en
local.conference.placeCuritiba, Brazilen
local.publisher.placeUnited States of Americaen
local.format.startpage734en
local.format.endpage738en
local.peerreviewedYesen
local.identifier.volume2en
local.contributor.lastnameNguyenen
local.contributor.lastnameBlumensteinen
local.contributor.lastnameMuthukkumarasamyen
local.contributor.lastnameLeedhamen
dc.identifier.staffune-id:cleedhamen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:6844en
dc.identifier.academiclevelAcademicen
local.title.maintitleOff-line Signature Verification Using Enhanced Modified Direction Features in Conjunction with Neural Classifiers and Support Vector Machinesen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.relation.urlhttp://www98.griffith.edu.au/dspace/bitstream/10072/17596/1/49943_1.pdfen
local.conference.detailsICDAR 2007: 9th International Conference on Document Analysis and Recognition, Curitiba, Brazil, 23rd - 26th September, 2007en
local.search.authorNguyen, Vuen
local.search.authorBlumenstein, Michaelen
local.search.authorMuthukkumarasamy, Vallipuramen
local.search.authorLeedham, Grahamen
local.uneassociationUnknownen
local.year.published2007en
local.date.start2007-09-23-
local.date.end2007-09-26-
Appears in Collections:Conference Publication
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

Page view(s)

966
checked on Mar 9, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.