Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/6665
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Yanen
dc.contributor.authorLeedham, Grahamen
dc.date.accessioned2010-10-07T15:05:00Z-
dc.date.issued2005-
dc.identifier.citationProceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR'05), v.2, p. 680-684en
dc.identifier.isbn0769524206en
dc.identifier.issn1520-5263en
dc.identifier.urihttps://hdl.handle.net/1959.11/6665-
dc.description.abstractIn this paper we propose and investigate a new segmentation algorithm called the ICA (independent component analysis) segmentation algorithm and compare it against other existing overlapping strokes segmentation algorithms. The ICA segmentation algorithm converts the original touching or overlapping word components into a blind source matrix and then calculates the weighted value matrix before the values are re-evaluated using a fast ICA model. The readjusted weighted value matrix is applied to the blind source matrix to separate the word components. The algorithm has been evaluated on 30 overlapped document images from the CEDAR letter database and another 30 degraded historical document images, which containing many different kinds of overlapping and touching words in adjacent lines. Quantitative analysis of the results by measuring text recall, and qualitative assessment of processed document image quality is reported. The ICA segmentation algorithm is demonstrated to be effective at resolving the problem in varying forms of overlapping or touching text lines.en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.ispartofProceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR'05)en
dc.titleIndependent Component Analysis Segmentation Algorithmen
dc.typeConference Publicationen
dc.relation.conferenceICDAR 2005: 8th International Conference on Document Analysis and Recognitionen
dc.identifier.doi10.1109/ICDAR.2005.140en
dc.subject.keywordsArtificial Intelligence and Image Processingen
dc.subject.keywordsImage Processingen
dc.subject.keywordsPattern Recognition and Data Miningen
local.contributor.firstnameYanen
local.contributor.firstnameGrahamen
local.subject.for2008080109 Pattern Recognition and Data Miningen
local.subject.for2008080199 Artificial Intelligence and Image Processing not elsewhere classifieden
local.subject.for2008080106 Image Processingen
local.subject.seo2008810199 Defence not elsewhere classifieden
local.subject.seo2008890299 Computer Software and Services not elsewhere classifieden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcleedham@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20100421-113849en
local.date.conference29th August - 1st September, 2005en
local.conference.placeSeoul, South Koreaen
local.publisher.placeLos Alamitos, United States of Americaen
local.format.startpage680en
local.format.endpage684en
local.identifier.scopusid33947390002en
local.peerreviewedYesen
local.identifier.volume2en
local.contributor.lastnameChenen
local.contributor.lastnameLeedhamen
dc.identifier.staffune-id:cleedhamen
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:6825en
dc.identifier.academiclevelAcademicen
local.title.maintitleIndependent Component Analysis Segmentation Algorithmen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.relation.urlhttp://www3.ntu.edu.sg/SCE/labs/forse/PDF/hisOrDeDoc_7.pdfen
local.conference.detailsICDAR 2005: 8th International Conference on Document Analysis and Recognition, Seoul, Korea, 29th August - 1st September, 2005en
local.search.authorChen, Yanen
local.search.authorLeedham, Grahamen
local.uneassociationUnknownen
local.year.published2005en
local.date.start2005-08-29-
local.date.end2005-09-01-
Appears in Collections:Conference Publication
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

6
checked on Jan 18, 2025

Page view(s)

998
checked on Mar 9, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.