Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/6622
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPervouchine, Vladimiren
dc.contributor.authorLeedham, Grahamen
dc.date.accessioned2010-10-01T13:58:00Z-
dc.date.issued2005-
dc.identifier.citationProceedings of the IEEE Region 10 Conference (TENCON'05), p. 2338-2343en
dc.identifier.isbn0780393112en
dc.identifier.urihttps://hdl.handle.net/1959.11/6622-
dc.description.abstractThis paper describes two approaches to approximation of handwriting strokes for use in writer identification. One approach is based on a thinning method and produces raster skeleton whereas the other approximates handwriting strokes by cubic splines and produces a vector skeleton. The vector skeletonisation method is designed to preserve the individual features that can distinguish one writer from another. Extraction of structural character-level features of handwriting is performed using both skeletonisation methods and the results are compared. Use of the vector skeletonisation method resulted in lower error rate during the feature extraction stage. It also enabled to extract more structural features and improved the accuracy of writer identification from 78% to 98% in the experiment with 100 samples of grapheme "th" collected from 20 writers.en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.ispartofProceedings of the IEEE Region 10 Conference (TENCON'05)en
dc.titleDocument Examiner Feature Extraction: Thinned vs. Skeletonised Handwriting Imagesen
dc.typeConference Publicationen
dc.relation.conferenceTENCON 2005: IEEE Region 10 Conferenceen
dc.identifier.doi10.1109/TENCON.2005.301018en
dc.subject.keywordsPattern Recognition and Data Miningen
dc.subject.keywordsArtificial Intelligence and Image Processingen
dc.subject.keywordsImage Processingen
local.contributor.firstnameVladimiren
local.contributor.firstnameGrahamen
local.subject.for2008080199 Artificial Intelligence and Image Processing not elsewhere classifieden
local.subject.for2008080106 Image Processingen
local.subject.for2008080109 Pattern Recognition and Data Miningen
local.subject.seo2008890299 Computer Software and Services not elsewhere classifieden
local.subject.seo2008810107 National Securityen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcleedham@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20100421-121510en
local.date.conference21st - 24th November, 2005en
local.conference.placeMelbourne, Australiaen
local.publisher.placeLos Alamitos, United States of Americaen
local.format.startpage2338en
local.format.endpage2343en
local.identifier.scopusid34249286586en
local.peerreviewedYesen
local.title.subtitleThinned vs. Skeletonised Handwriting Imagesen
local.contributor.lastnamePervouchineen
local.contributor.lastnameLeedhamen
dc.identifier.staffune-id:cleedhamen
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:6781en
dc.identifier.academiclevelAcademicen
local.title.maintitleDocument Examiner Feature Extractionen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.relation.urlhttp://www3.ntu.edu.sg/SCE/labs/forse/PDF/docExam_12.pdfen
local.conference.detailsTENCON 2005: IEEE Region 10 Conference, Melbourne, Australia, 21st - 24th November, 2005en
local.search.authorPervouchine, Vladimiren
local.search.authorLeedham, Grahamen
local.uneassociationUnknownen
local.year.published2005en
local.date.start2005-11-21-
local.date.end2005-11-24-
Appears in Collections:Conference Publication
Files in This Item:
3 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

5
checked on Dec 28, 2024

Page view(s)

996
checked on Mar 9, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.