Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/63481
Title: Beyond body size—new traits for new heights in trait-based modelling of predator-prey dynamics
Contributor(s): Wootton, Kate L (author); Karlsson, Alva  (author)orcid ; Jonsson, Tomas (author); Banks, H T (author); Bommarco, Riccardo  (author); Roslin, Tomas  (author)orcid ; Laubmeier, Amanda N (author)
Publication Date: 2022
Early Online Version: 2022
Open Access: Yes
DOI: 10.1371/journal.pone.0251896
Handle Link: https://hdl.handle.net/1959.11/63481
Abstract: 

Food webs map feeding interactions among species, providing a valuable tool for understanding and predicting community dynamics. Using species' body sizes is a promising avenue for parameterizing food-web models, but such approaches have not yet been able to fully recover observed community dynamics. Such discrepancies suggest that traits other than body size also play important roles. For example, differences in species' use of microhabitat or non-consumptive effects of intraguild predators may affect dynamics in ways not captured by body size. In Laubmeier et al. (2018), we developed a dynamic food-web model incorporating microhabitat and non-consumptive predator effects in addition to body size, and used simulations to suggest an optimal sampling design of a mesocosm experiment to test the model. Here, we perform the mesocosm experiment to generate empirical time-series of insect herbivore and predator abundance dynamics. We minimize least squares error between the model and time-series to determine parameter values of four alternative models, which differ in terms of including vs excluding microhabitat use and non-consumptive predator-predator effects. We use both statistical and expert-knowledge criteria to compare the models and find including both microhabitat use and non-consumptive predator-predator effects best explains observed aphid and predator population dynamics, followed by the model including microhabitat alone. This ranking suggests that microhabitat plays a larger role in driving population dynamics than non-consumptive predator-predator effects, although both are clearly important. Our results illustrate the importance of additional traits alongside body size in driving trophic interactions. They also point to the need to consider trophic interactions and population dynamics in a wider community context, where non-trophic impacts can dramatically modify the interplay between multiple predators and prey. Overall, we demonstrate the potential for utilizing traits beyond body size to improve trait-based models and the value of iterative cycling between theory, data and experiment to hone current insights into how traits affect food-web dynamics.

Publication Type: Journal Article
Source of Publication: PLoS One, 17(7), p. 1-24
Publisher: Public Library Science
Place of Publication: United States of America
ISSN: 1932-6203
Fields of Research (FoR) 2020: 3109 Zoology
Socio-Economic Objective (SEO) 2020: tbd
Peer Reviewed: Yes
HERDC Category Description: C1 Refereed Article in a Scholarly Journal
Appears in Collections:Journal Article

Files in This Item:
2 files
File Description SizeFormat 
openpublished/BeyondCurtsdotter2022JournalArticle.pdfPublished version2.06 MBAdobe PDF
Download Adobe
View/Open
Show full item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons