Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/63001
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSalgadoe, Suranthaen
dc.contributor.authorLamb, Daviden
dc.coverage.spatialChilders (Bundaberg region), Queensland, Australia, (24°51′0″S, 152°21′0″E)en
dc.date.accessioned2024-09-19T03:41:21Z-
dc.date.available2024-09-19T03:41:21Z-
dc.date.issued2019-11-29-
dc.identifier.urihttps://hdl.handle.net/1959.11/63001-
dc.description.abstractPhytophthora root rot disease (PRR) is a major threat in avocado orchards. To identify a potential alternative to the current methods of assessing PRR in avocado for example visual assessment of canopy decline by human eyes, data has been collected from number of novel remote sensing technologies for measuring PRR induced canopy decline in avocado. Included Red Green and Blue (RGB) imagery acquired from a smartphone; thermal imagery from a hand-held camera and hyperspectral data acquired with a hand-held FieldSpec® 3 spectroradiometeren
dc.format.extent.jpeg .xlsx .txten
dc.languageenen
dc.publisherUniversity of New Englanden
dc.relation.urihttps://hdl.handle.net/1959.11/57161en
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleEvaluating Remote Sensing Techniques for Assessing Phytophthora Root Rote Induced Canopy Decline Symptoms in Avocado Orchards - Dataseten
dc.typeDataseten
dc.identifier.doi10.25952/g64n-5591en
dcterms.accessRightsMediateden
dcterms.rightsHolderSurantha Salgadoeen
dc.identifier.projectEvaluating Remote sensing techonolgies for assessing Phytophthora root rot induced canopy decline symptoms in avocado treesen
dc.subject.keywordsThermal Imageryen
dc.subject.keywordsHyperspectral dataen
dc.subject.keywordsRGB canopy imageryen
local.contributor.firstnameSuranthaen
local.contributor.firstnameDaviden
local.subject.for2008090905 Photogrammetry and Remote Sensingen
local.subject.for2008070199 Agriculture, Land and Farm Management not elsewhere classifieden
local.subject.seo2008820299 Horticultural Crops not elsewhere classifieden
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailasalgado@myune.edu.auen
local.profile.emaildlamb@une.edu.auen
local.output.categoryXen
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeArmidale, NSW, Australiaen
local.contributor.lastnameSalgadoeen
local.contributor.lastnameLamben
dc.identifier.staffune-id:asalgadoen
dc.identifier.staffune-id:dlamben
local.profile.orcid0000-0002-9962-9508en
local.profile.orcid0000-0002-2917-2231en
local.profile.rolecreatoren
local.profile.rolesupervisoren
local.identifier.unepublicationidune:1959.11/63001en
dc.identifier.academiclevelStudenten
dc.identifier.academiclevelAcademicen
local.title.maintitleEvaluating Remote Sensing Techniques for Assessing Phytophthora Root Rote Induced Canopy Decline Symptoms in Avocado Orchards - Dataseten
local.output.categorydescriptionX Dataseten
local.search.authorSalgadoe, Suranthaen
local.search.supervisorLamb, Daviden
dcterms.rightsHolder.managedbySurantha Salgadoeen
local.datasetcontact.nameSurantha Salgadoeen
local.datasetcontact.emailsurantha_a@yahoo.comen
local.datasetcustodian.nameSurantha Salgadoeen
local.datasetcustodian.emailsurantha@wyb.ac.lken
local.datasetcontact.detailsSurantha Salgadoe - surantha_a@yahoo.comen
local.datasetcustodian.detailsSurantha Salgadoe - surantha@wyb.ac.lken
dcterms.source.datasetlocationUniversity of New Englanden
local.istranslatedNoen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2019en
local.subject.for2020401304 Photogrammetry and remote sensingen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Dataset
School of Science and Technology
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons