Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/62940
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJaffry, Shanen
dc.contributor.authorShah, Syed Tariqen
dc.contributor.authorHasan, Syed Farazen
dc.date.accessioned2024-09-18T05:25:09Z-
dc.date.available2024-09-18T05:25:09Z-
dc.date.issued2020-
dc.identifier.citationProceedings of the Wireless Communications and Networking Conference Workshops, WCNCW 2020, p. 1-6en
dc.identifier.isbn9781728151786en
dc.identifier.isbn9781728151793en
dc.identifier.urihttps://hdl.handle.net/1959.11/62940-
dc.description.abstract<p>5G and beyond networks are expected to provide ubiquitous, ultra-reliable low latency connectivity to cellular users. Maintaining this stringent B5 performance requirement will be a challenging task for cellular service providers. A key factor that may affect network performance will be anomalies such as sleeping cells or congestion due to high traffic volumes. In the worst cases, these anomalies may cause a partial or complete networkoutage.Traditionaloutagemanagementtechnique s,such as drive-testing, may prove unsuitable in the B5G era as they are time consuming and costly. These outdated mechanisms are also unable to provide real-time data analysis. Hence future networks will rely on data-driven self-organizing networks (SON) with selfhealing capabilities to detect anomalies. Machine learning will be an essential component of such systems. In this paper we have proposed a semi-supervised learning algorithm to detect anomaly using real-world Spatio-temporal call data records (CDRs). We will demonstrate that our proposed algorithm can detect anomalies with high accuracy. The CDR is collected for the entire city of Milan, Italy in the form of spatial grids. We will demonstrate that once trained using the single-cell grid record, our model can accurately predict anomalies for the neighboring grids as well.</p>en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineersen
dc.relation.ispartofProceedings of the Wireless Communications and Networking Conference Workshops, WCNCW 2020en
dc.titleData-Driven Semi-Supervised Anomaly Detection Using Real-World Call Data Recorden
dc.typeConference Publicationen
dc.relation.conferenceWCNCW 2020: Wireless Communications and Networking Conference Workshopsen
dc.identifier.doi10.1109/WCNCW48565.2020.9124782en
local.contributor.firstnameShanen
local.contributor.firstnameSyed Tariqen
local.contributor.firstnameSyed Farazen
local.profile.schoolResearch Servicesen
local.profile.emailshasan3@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference6th - 9th April, 2020en
local.conference.placeSeoul, South Koreaen
local.publisher.placeUnited States of Americaen
local.format.startpage1en
local.format.endpage6en
local.peerreviewedYesen
local.contributor.lastnameJaffryen
local.contributor.lastnameShahen
local.contributor.lastnameHasanen
dc.identifier.staffune-id:shasan3en
local.profile.orcid0009-0006-5345-2790en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/62940en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleData-Driven Semi-Supervised Anomaly Detection Using Real-World Call Data Recorden
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsWCNCW 2020: Wireless Communications and Networking Conference Workshops, Seoul, South Korea, 6th - 9th April, 2020en
local.search.authorJaffry, Shanen
local.search.authorShah, Syed Tariqen
local.search.authorHasan, Syed Farazen
local.uneassociationNoen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2020en
local.year.presented2024en
local.subject.for20204006 Communications engineeringen
local.subject.seo2020tbden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-09-20en
Appears in Collections:Conference Publication
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.