Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/62140
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrankovic, Ljiljanaen
dc.contributor.authorGiggins, Helenen
local.source.editorEditor(s): Petković, M and Jonker, Wen
dc.date.accessioned2024-08-12T23:23:31Z-
dc.date.available2024-08-12T23:23:31Z-
dc.date.issued2007-06-12-
dc.identifier.citationSecurity, Privacy, and Trust in Modern Data Management, p. 167-181en
dc.identifier.isbn9783540698616en
dc.identifier.isbn9783540698609en
dc.identifier.isbn9783642089268en
dc.identifier.urihttps://hdl.handle.net/1959.11/62140-
dc.description.abstract<p>Statistical database security focuses on the protection of confidential individual values stored in so-called statistical databases and used for statistical purposes. Examples include patient records used by medical researchers, and detailed phone call records, statistically analyzed by phone companies in order to improve their services. This problem became apparent in the 1970s and has escalated in recent years due to massive data collection and growing social awareness of individual privacy.</p> <p>The techniques used for preventing statistical database compromise fall into two categories: noise addition, where all data and/or statistics are available but are only approximate rather than exact, and restriction, where the system only provides those statistics and/or data that are considered safe. In either case, a technique is evaluated by measuring both the information loss and the achieved level of privacy. The goal of statistical data protection is to maximize the privacy while minimizing the information loss. In order to evaluate a particular technique it is important to establish a theoretical lower bound on the information loss necessary to achieve a given level of privacy. In this chapter, we present an overview of the problem and the most important results in the area.</p>en
dc.languageenen
dc.publisherSpringer, Berlin, Heidelbergen
dc.relation.ispartofSecurity, Privacy, and Trust in Modern Data Managementen
dc.relation.ispartofseriesData-Centric Systems and Applicationsen
dc.relation.isversionof1en
dc.titleStatistical Database Securityen
dc.typeBook Chapteren
dc.identifier.doi10.1007/978-3-540-69861-6_12en
local.contributor.firstnameLjiljanaen
local.contributor.firstnameHelenen
local.profile.schoolSchool of Science and Technologyen
local.profile.emaillbrankov@une.edu.auen
local.output.categoryB1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeGermanyen
local.identifier.totalchapters29en
local.format.startpage167en
local.format.endpage181en
local.peerreviewedYesen
local.contributor.lastnameBrankovicen
local.contributor.lastnameGigginsen
dc.identifier.staffune-id:lbrankoven
local.profile.orcid0000-0002-5056-4627en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/62140en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleStatistical Database Securityen
local.output.categorydescriptionB1 Chapter in a Scholarly Booken
local.search.authorBrankovic, Ljiljanaen
local.search.authorGiggins, Helenen
local.uneassociationNoen
local.atsiresearchNoen
local.isrevisionNoen
local.sensitive.culturalNoen
local.year.published2007en
local.subject.for2020460402 Data and information privacyen
local.subject.seo2020220499 Information systems, technologies and services not elsewhere classifieden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Book Chapter
School of Science and Technology
Files in This Item:
1 files
File SizeFormat 
Show simple item record

Page view(s)

166
checked on Sep 8, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.