Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61636
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlharbi, Hadeelen
dc.contributor.authorSandhu, Kamaljeeten
dc.date.accessioned2024-07-15T04:44:22Z-
dc.date.available2024-07-15T04:44:22Z-
dc.date.issued2020-
dc.identifier.citationDigital Innovations for Customer Engagement, Management, and Organizational Improvement, p. 184-199en
dc.identifier.isbn9781799851714en
dc.identifier.isbn9781799851738en
dc.identifier.isbn9781799851721en
dc.identifier.issn2327-3429-
dc.identifier.issn2327-3437-
dc.identifier.urihttps://hdl.handle.net/1959.11/61636-
dc.description.abstract<p>The aim of this chapter is to present the multivariate analyses results of the factors that influence students' acceptance and the continuance usage intention of digital learning analytics recommender systems at higher education institutions in Saudi Arabia. Data was collected from 353 Saudi Arabian university students via an online digital survey questionnaire. The research model was then used to examine the hypothesized relationships between user experiences of the digital learning analytics recommender system and their intentions for long-term adoption of the system. The research model was primarily based on the technology acceptance model (TAM) developed by Davis (1989)—the variables ‘perceived usefulness', ‘perceived ease of use', and ‘acceptance', particularly—with ‘continuance usage intention' added as an endogenous construct and with ‘service quality' and ‘user experience' added as external variables.</p>en
dc.languageenen
dc.publisherIGI Globalen
dc.relation.ispartofDigital Innovations for Customer Engagement, Management, and Organizational Improvementen
dc.relation.ispartofseriesAdvances in Business Strategy and Competitive Advantage (ABSCA)en
dc.titleDigital Learning Analytics Recommender System for Universitiesen
dc.typeBook Chapteren
dc.identifier.doi10.4018/978-1-7998-5171-4.ch010en
local.contributor.firstnameHadeelen
local.contributor.firstnameKamaljeeten
local.profile.schoolUNE Business Schoolen
local.profile.emailksandhu@une.edu.auen
local.output.categoryB1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited State of Americaen
local.identifier.totalchapters12en
local.format.startpage184en
local.format.endpage199en
local.peerreviewedYesen
local.contributor.lastnameAlharbien
local.contributor.lastnameSandhuen
dc.identifier.staffune-id:ksandhuen
local.profile.orcid0000-0003-4624-6834en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61636en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleDigital Learning Analytics Recommender System for Universitiesen
local.output.categorydescriptionB1 Chapter in a Scholarly Booken
local.search.authorAlharbi, Hadeelen
local.search.authorSandhu, Kamaljeeten
local.uneassociationYesen
local.atsiresearchNoen
local.isrevisionNoen
local.sensitive.culturalNoen
local.year.published2020en
local.subject.seo2020220408 Information systemsen
local.codeupdate.date2024-11-01T10:16:47.927en
local.codeupdate.epersonksandhu@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for20203503 Business systems in contexten
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
Appears in Collections:Book Chapter
UNE Business School
Files in This Item:
1 files
File SizeFormat 
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.