Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/61412
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ebrahimi, Amir | en |
dc.contributor.author | Luo, Suhuai | en |
dc.contributor.author | Chiong, Raymond | en |
dc.date.accessioned | 2024-07-10T01:02:11Z | - |
dc.date.available | 2024-07-10T01:02:11Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Proceedings of the 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), p. 1-6 | en |
dc.identifier.isbn | 9781728185798 | en |
dc.identifier.isbn | 9781728185804 | en |
dc.identifier.issn | 2151-2205 | en |
dc.identifier.issn | 2151-2191 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/61412 | - |
dc.description.abstract | <p>This paper focuses on detecting Alzheimer's Disease (AD) using the ResNet-18 model on Magnetic Resonance Imaging (MRI). Previous studies have applied different 2D Convolutional Neural Networks (CNNs) to detect AD. The main idea being to split 3D MRI scans into 2D image slices, so that classification can be performed on the image slices independently. This idea allows researchers to benefit from the concept of transfer learning. However, 2D CNNs are incapable of understanding the relationship among 2D image slices in a 3D MRI scan. One solution is to employ 3D CNNs instead of 2D ones. In this paper, we propose a method to utilise transfer learning in 3D CNNs, which allows the transfer of knowledge from 2D image datasets to a 3D image dataset. Both 2D and 3D CNNs are compared in this study, and our results show that introducing transfer learning to a 3D CNN improves the accuracy of an AD detection system. After using an optimisation method in the training process, our approach achieved 96.88% accuracy, 100% sensitivity, and 93.75% specificity.</p> | en |
dc.language | en | en |
dc.publisher | IEEE | en |
dc.relation.ispartof | Proceedings of the 35th International Conference on Image and Vision Computing New Zealand (IVCNZ) | en |
dc.title | Introducing Transfer Learning to 3D ResNet-18 for Alzheimer's Disease Detection on MRI Images | en |
dc.type | Conference Publication | en |
dc.relation.conference | IVCNZ 2020: 35th International Conference on Image and Vision Computing New Zealand | en |
dc.identifier.doi | 10.1109/IVCNZ51579.2020.9290616 | en |
local.contributor.firstname | Amir | en |
local.contributor.firstname | Suhuai | en |
local.contributor.firstname | Raymond | en |
local.profile.school | School of Science & Technology | en |
local.profile.email | rchiong@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.date.conference | 25th - 27th November, 2020 | en |
local.conference.place | Wellington, New Zealand | en |
local.publisher.place | United States of America | en |
local.format.startpage | 1 | en |
local.format.endpage | 6 | en |
local.peerreviewed | Yes | en |
local.contributor.lastname | Ebrahimi | en |
local.contributor.lastname | Luo | en |
local.contributor.lastname | Chiong | en |
dc.identifier.staff | une-id:rchiong | en |
local.profile.orcid | 0000-0002-8285-1903 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/61412 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Introducing Transfer Learning to 3D ResNet-18 for Alzheimer's Disease Detection on MRI Images | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.conference.details | IVCNZ 2020: 35th International Conference on Image and Vision Computing New Zealand, Wellington, New Zealand, 25th - 27th November, 2020 | en |
local.search.author | Ebrahimi, Amir | en |
local.search.author | Luo, Suhuai | en |
local.search.author | Chiong, Raymond | en |
local.uneassociation | No | en |
dc.date.presented | 2020 | - |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2020 | en |
local.year.presented | 2020 | en |
local.subject.for2020 | 4602 Artificial intelligence | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.date.moved | 2024-08-28 | en |
Appears in Collections: | Book Chapter School of Science and Technology |
SCOPUSTM
Citations
60
checked on Oct 26, 2024
Page view(s)
88
checked on Aug 3, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.