Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/61412
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEbrahimi, Amiren
dc.contributor.authorLuo, Suhuaien
dc.contributor.authorChiong, Raymonden
dc.date.accessioned2024-07-10T01:02:11Z-
dc.date.available2024-07-10T01:02:11Z-
dc.date.issued2020-
dc.identifier.citationProceedings of the 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), p. 1-6en
dc.identifier.isbn9781728185798en
dc.identifier.isbn9781728185804en
dc.identifier.issn2151-2205en
dc.identifier.issn2151-2191en
dc.identifier.urihttps://hdl.handle.net/1959.11/61412-
dc.description.abstract<p>This paper focuses on detecting Alzheimer's Disease (AD) using the ResNet-18 model on Magnetic Resonance Imaging (MRI). Previous studies have applied different 2D Convolutional Neural Networks (CNNs) to detect AD. The main idea being to split 3D MRI scans into 2D image slices, so that classification can be performed on the image slices independently. This idea allows researchers to benefit from the concept of transfer learning. However, 2D CNNs are incapable of understanding the relationship among 2D image slices in a 3D MRI scan. One solution is to employ 3D CNNs instead of 2D ones. In this paper, we propose a method to utilise transfer learning in 3D CNNs, which allows the transfer of knowledge from 2D image datasets to a 3D image dataset. Both 2D and 3D CNNs are compared in this study, and our results show that introducing transfer learning to a 3D CNN improves the accuracy of an AD detection system. After using an optimisation method in the training process, our approach achieved 96.88% accuracy, 100% sensitivity, and 93.75% specificity.</p>en
dc.languageenen
dc.publisherIEEEen
dc.relation.ispartofProceedings of the 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)en
dc.titleIntroducing Transfer Learning to 3D ResNet-18 for Alzheimer's Disease Detection on MRI Imagesen
dc.typeConference Publicationen
dc.relation.conferenceIVCNZ 2020: 35th International Conference on Image and Vision Computing New Zealanden
dc.identifier.doi10.1109/IVCNZ51579.2020.9290616en
local.contributor.firstnameAmiren
local.contributor.firstnameSuhuaien
local.contributor.firstnameRaymonden
local.profile.schoolSchool of Science & Technologyen
local.profile.emailrchiong@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.date.conference25th - 27th November, 2020en
local.conference.placeWellington, New Zealanden
local.publisher.placeUnited States of Americaen
local.format.startpage1en
local.format.endpage6en
local.peerreviewedYesen
local.contributor.lastnameEbrahimien
local.contributor.lastnameLuoen
local.contributor.lastnameChiongen
dc.identifier.staffune-id:rchiongen
local.profile.orcid0000-0002-8285-1903en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/61412en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleIntroducing Transfer Learning to 3D ResNet-18 for Alzheimer's Disease Detection on MRI Imagesen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsIVCNZ 2020: 35th International Conference on Image and Vision Computing New Zealand, Wellington, New Zealand, 25th - 27th November, 2020en
local.search.authorEbrahimi, Amiren
local.search.authorLuo, Suhuaien
local.search.authorChiong, Raymonden
local.uneassociationNoen
dc.date.presented2020-
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2020en
local.year.presented2020en
local.subject.for20204602 Artificial intelligenceen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.date.moved2024-08-28en
Appears in Collections:Book Chapter
School of Science and Technology
Show simple item record

SCOPUSTM   
Citations

60
checked on Oct 26, 2024

Page view(s)

88
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.