Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/6101
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ma, Yang | en |
dc.contributor.author | Leedham, Graham | en |
dc.date.accessioned | 2010-06-01T13:30:00Z | - |
dc.date.issued | 2007 | - |
dc.identifier.citation | Pattern Recognition Letters, 28(7), p. 873-883 | en |
dc.identifier.issn | 1872-7344 | en |
dc.identifier.issn | 0167-8655 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/6101 | - |
dc.description.abstract | There is a wish to be able to enter Chinese text into mobile computing devices in real-time at the speed of speech. Handwritten shorthand schemes offer the potential to achieve this data recording rate. A new overall solution to the segmentation and classification of phonetic features in Renqun shorthand, which records Chinese characters phonetically, is proposed in this paper. A new writing rule is introduced to improve the machine readability of Renqun shorthand. Evaluation results show that the introduction of the new rule has a positive effect on the recognition performance. The recognition accuracies for vocalized outlines and shortforms following the new rule achieve 83% and 84.07%, respectively. | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Pattern Recognition Letters | en |
dc.title | On-line recognition of handwritten Renqun shorthand for fast mobile Chinese text entry | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.patrec.2006.12.002 | en |
dc.subject.keywords | Computer Vision | en |
dc.subject.keywords | Image Processing | en |
dc.subject.keywords | Pattern Recognition and Data Mining | en |
local.contributor.firstname | Yang | en |
local.contributor.firstname | Graham | en |
local.subject.for2008 | 080109 Pattern Recognition and Data Mining | en |
local.subject.for2008 | 080104 Computer Vision | en |
local.subject.for2008 | 080106 Image Processing | en |
local.subject.seo2008 | 890299 Computer Software and Services not elsewhere classified | en |
local.subject.seo2008 | 810107 National Security | en |
local.subject.seo2008 | 810199 Defence not elsewhere classified | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | cleedham@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20100415-142651 | en |
local.publisher.place | Netherlands | en |
local.format.startpage | 873 | en |
local.format.endpage | 883 | en |
local.identifier.scopusid | 33847029568 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 28 | en |
local.identifier.issue | 7 | en |
local.contributor.lastname | Ma | en |
local.contributor.lastname | Leedham | en |
dc.identifier.staff | une-id:cleedham | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:6257 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | On-line recognition of handwritten Renqun shorthand for fast mobile Chinese text entry | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Ma, Yang | en |
local.search.author | Leedham, Graham | en |
local.uneassociation | Unknown | en |
local.year.published | 2007 | en |
Appears in Collections: | Journal Article |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
3
checked on Nov 30, 2024
Page view(s)
940
checked on Mar 8, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.