Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/59294
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Samuel Zen
dc.contributor.authorFrench, Matthew Gen
dc.contributor.authorPavlov, Konstantin Men
dc.contributor.authorLi, Heyang Thomasen
dc.date.accessioned2024-05-15T05:42:10Z-
dc.date.available2024-05-15T05:42:10Z-
dc.date.issued2022-
dc.identifier.citationDEVELOPMENTS IN X-RAY TOMOGRAPHY XIV, v.12242en
dc.identifier.issn0277-786Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/59294-
dc.description.abstract<p>X-Ray Computed Tomography (CT) has revolutionised modern medical imaging. However, X-Ray CT imaging requires patients to be exposed to radiation, which can increase the risk of cancer. Therefore there exists an aim to reduce radiation doses for CT imaging without sacrificing image accuracy. This research combines phase retrieval with the ShallowU-Net CNN method to achieve the aim. This paper shows that a significant change in existing machine learning neural network algorithms could improve the X-ray phase retrieval in propagation-based phase-contrast imaging. This paper applies deep learning methods, through a variant of the existing U-Net architecture, named ShallowU-Net, to show that it is possible to perform two distance X-ray phase retrieval on composite materials by predicting a portion of the required data. ShallowU-Net is faster in training and in deployment. This method also performs data stretching and pre-processing, to reduce the numerical instability of the U-Net algorithm thereby improving the phase retrieval images.</p>en
dc.languageenen
dc.publisherSpie-Int Soc Optical Engineeringen
dc.relation.ispartofDEVELOPMENTS IN X-RAY TOMOGRAPHY XIVen
dc.titleShallow U-Net deep learning approach for phase retrieval in propagation-based phase-contrast imagingen
dc.typeConference Publicationen
dc.identifier.doi10.1117/12.2644579en
dc.subject.keywordsPhase Contrasten
dc.subject.keywordsPhase Retrievalen
dc.subject.keywordsShallow U-Neten
dc.subject.keywordsX-Ray Projectionen
dc.subject.keywordsOpticsen
dc.subject.keywordsImaging Science & Photographic Technologyen
dc.subject.keywordsDeep Learningen
local.contributor.firstnameSamuel Zen
local.contributor.firstnameMatthew Gen
local.contributor.firstnameKonstantin Men
local.contributor.firstnameHeyang Thomasen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailkpavlov@une.edu.auen
local.output.categoryE2en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeBELLINGHAMen
local.identifier.volume12242en
local.contributor.lastnameLien
local.contributor.lastnameFrenchen
local.contributor.lastnamePavloven
local.contributor.lastnameLien
dc.identifier.staffune-id:kpavloven
local.profile.orcid0000-0002-1756-4406en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/59294en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleShallow U-Net deep learning approach for phase retrieval in propagation-based phase-contrast imagingen
local.output.categorydescriptionE2 Non-Refereed Scholarly Conference Publicationen
local.search.authorLi, Samuel Zen
local.search.authorFrench, Matthew Gen
local.search.authorPavlov, Konstantin Men
local.search.authorLi, Heyang Thomasen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2022en
local.subject.for20205105 Medical and biological physicsen
local.subject.seo2020tbden
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeExternal Affiliationen
local.profile.affiliationtypeUNE Affiliationen
local.profile.affiliationtypeExternal Affiliationen
Appears in Collections:Conference Publication
Show simple item record
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.