Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/59106
Title: | Mapping the condition of macadamia tree crops using multi-spectral UAV and WorldView-3 imagery |
Contributor(s): | Johansen, Kasper (author); Duan, Qibin (author); Tu, Yu-Hsuan (author); Searle, C (author); Wu, Dan (author); Phinn, Stuart (author); Robson, Andrew (author) ; McCabe, Matthew F |
Publication Date: | 2020-07 |
DOI: | 10.1016/j.isprsjprs.2020.04.017 |
Handle Link: | https://hdl.handle.net/1959.11/59106 |
Abstract: | | Australia is one of the world's largest producers of macadamia nuts. As macadamia trees can take up to 15 years to mature and produce maximum yield, it is important to optimize tree condition. Field based assessment of macadamia tree condition is time-consuming and often inconsistent. Using remotely sensed imagery may allow for faster, more extensive, and more consistent assessment of macadamia tree condition. To identify individual macadamia tree crowns, high spatial resolution imagery is required. Hence, the objective of this work was to develop and test an approach to map the condition of individual macadamia tree crowns using both multi-spectral Unmanned Aerial Vehicle (UAV) and WorldView-3 imagery for different macadamia varieties and three different sites located near Bundaberg, Australia. A random forest classifier, based on all available spectral bands and selected vegetation indices was used to predict five condition categories, ranging from excellent (category 1) to poor (category 5). Various combinations of the developed models were tested between the three sites and over time. The results showed that the multi-spectral WorldView-3 imagery produced the lowest out of bag (OOB) classification errors in most cases. However, for both the UAV and the WorldView-3 imagery, more than 98.5% of predicted macadamia condition categories were either correctly mapped or offset by a single category out of the five condition categories (excellent, good, moderate, fair and poor) for trees of the same variety and at one point in time. Multi-temporally, the WorldView-3 imagery performed better than the UAV data for predicting the condition of the same macadamia tree variety. Applying a model from one site to another site with the same macadamia tree variety produced OOB classification between 31.20 and 42.74%, but with >98.63% of trees predicted within a single condition category. Importantly, models trained based on one type of macadamia tree variety could not be successfully applied to a site with another variety. The developed classification models may be used as a decision and management support tool for the macadamia industry to inform management practices and improve on-demand irrigation, fertilization, and pest inspection at the individual tree level.
Publication Type: | Journal Article |
Source of Publication: | ISPRS Journal of Photogrammetry and Remote Sensing, v.165, p. 28-40 |
Publisher: | Elsevier BV |
Place of Publication: | The Netherlands |
ISSN: | 1872-8235 0924-2716 |
Fields of Research (FoR) 2020: | 3002 Agriculture, land and farm management |
Socio-Economic Objective (SEO) 2020: | tbd |
Peer Reviewed: | Yes |
HERDC Category Description: | C1 Refereed Article in a Scholarly Journal |
Appears in Collections: | Journal Article
|
Files in This Item:
1 files
Show full item record
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.