Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/5718
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLien, Gudbranden
dc.contributor.authorHardaker, J Brianen
dc.contributor.authorvan Asseldonk, Marcel A P Men
dc.contributor.authorRichardson, James Wen
dc.date.accessioned2010-04-28T16:41:00Z-
dc.date.issued2009-
dc.identifier.citationAgricultural Systems, 101(1-2), p. 42-48en
dc.identifier.issn1873-2267en
dc.identifier.issn0308-521Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/5718-
dc.description.abstractBecause relevant historical data for farms are inevitably sparse, most risk programming studies rely on few observations of uncertain crop and livestock returns. We show the instability of model solutions with few observations and discuss how to use available information to derive an appropriate multivariate distribution function that can be sampled for a more complete representation of the possible risks in risk-based models. For the particular example of a Norwegian mixed livestock and crop farm, the solution is shown to be unstable with few states of nature producing a risky solution that may be appreciably suboptimal. However, the risk of picking a sub-optimal plan declines with increases in number of states of nature generated by Latin hypercube sampling.en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofAgricultural Systemsen
dc.titleRisk programming and sparse data: how to get more reliable resultsen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.agsy.2009.03.001en
dc.subject.keywordsAgricultural Economicsen
local.contributor.firstnameGudbranden
local.contributor.firstnameJ Brianen
local.contributor.firstnameMarcel A P Men
local.contributor.firstnameJames Wen
local.subject.for2008140201 Agricultural Economicsen
local.subject.seo2008919999 Economic Framework not elsewhere classifieden
local.profile.schoolEconomicsen
local.profile.emailbhardake@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20100423-155057en
local.publisher.placeNetherlandsen
local.format.startpage42en
local.format.endpage48en
local.identifier.scopusid67349114075en
local.peerreviewedYesen
local.identifier.volume101en
local.identifier.issue1-2en
local.title.subtitlehow to get more reliable resultsen
local.contributor.lastnameLienen
local.contributor.lastnameHardakeren
local.contributor.lastnamevan Asseldonken
local.contributor.lastnameRichardsonen
dc.identifier.staffune-id:bhardakeen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:5856en
dc.identifier.academiclevelAcademicen
local.title.maintitleRisk programming and sparse dataen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLien, Gudbranden
local.search.authorHardaker, J Brianen
local.search.authorvan Asseldonk, Marcel A P Men
local.search.authorRichardson, James Wen
local.uneassociationUnknownen
local.identifier.wosid000267136300004en
local.year.published2009-
Appears in Collections:Journal Article
Files in This Item:
3 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

17
checked on Jan 18, 2025

Page view(s)

1,044
checked on Apr 2, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.