Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/56980
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sykes, Daniel | en |
dc.contributor.author | Schmalz, Gerd | en |
dc.date.accessioned | 2023-12-13T22:14:01Z | - |
dc.date.available | 2023-12-13T22:14:01Z | - |
dc.date.issued | 2021-05-14 | - |
dc.identifier.uri | https://hdl.handle.net/1959.11/56980 | - |
dc.description.abstract | Data pertaining to the computations of particular coefficients for the Ezhov-Schmalz closed normal form for rigid spheres, and to the expontential mappings of the Sasakian symmetry algebras corresponding to Cartan's list of homogeneous CR manifolds with a fixed Reeb vector field that is simultaneously an infinitesimal CR automorphism of the underlying the CR manifold. | en |
dc.format.extent | .mw, .bak, .pdf, .gz, .maple, . | en |
dc.language | en | en |
dc.publisher | University of New England | en |
dc.relation.uri | https://hdl.handle.net/1959.11/56979 | en |
dc.title | On the classification of Spherical rigid CR manifolds and Sasakian manifolds in C2 - Dataset | en |
dc.type | Dataset | en |
dc.identifier.doi | 10.25952/sbbe-xt73 | en |
dcterms.accessRights | Mediated | en |
dcterms.rightsHolder | Daniel Sykes | en |
dc.subject.keywords | Sasakian manifolds | en |
dc.subject.keywords | Homogeneous manifolds | en |
dc.subject.keywords | Stanton surfaces | en |
local.contributor.firstname | Daniel | en |
local.contributor.firstname | Gerd | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | 14.daniel.sykes@gmail.com | en |
local.profile.email | schmalz@une.edu.au | en |
local.output.category | X | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Armidale, Australia | en |
local.contributor.lastname | Sykes | en |
local.contributor.lastname | Schmalz | en |
dc.identifier.staff | une-id:schmalz | en |
local.profile.orcid | 0000-0002-6141-9329 | en |
local.profile.role | creator | en |
local.profile.role | supervisor | en |
local.identifier.unepublicationid | une:1959.11/56980 | en |
dc.identifier.academiclevel | Student | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | On the classification of Spherical rigid CR manifolds and Sasakian manifolds in C2 | en |
local.relation.fundingsourcenote | Research training program (RTP) Scholarship | en |
local.output.categorydescription | X Dataset | en |
local.search.author | Sykes, Daniel | en |
local.search.supervisor | Schmalz, Gerd | en |
dcterms.rightsHolder.managedby | Daniel Sykes | en |
local.datasetcontact.name | Daniel Sykes | en |
local.datasetcontact.email | 14.daniel.sykes@gmail.com | en |
local.datasetcustodian.name | Daniel Sykes | en |
local.datasetcustodian.email | 14.daniel.sykes@gmail.com | en |
local.datasetcontact.details | Daniel Sykes - 14.daniel.sykes@gmail.com | en |
local.datasetcustodian.details | Daniel Sykes - 14.daniel.sykes@gmail.com | en |
dcterms.ispartof.project | On the classification of Spherical rigid CR manifolds and Sasakian manifolds in C2 | en |
dcterms.source.datasetlocation | University of New England | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2021 | - |
local.subject.for2020 | 490402 Algebraic and differential geometry | en |
local.subject.for2020 | 490411 Real and complex functions (incl. several variables) | en |
local.subject.for2020 | 490204 Mathematical aspects of general relativity | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
dc.coverage.place | Armidale, NSW, Australia | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | UNE Affiliation | en |
Appears in Collections: | Dataset School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.