Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/5607
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, C Ken
dc.contributor.authorLeedham, Grahamen
dc.date.accessioned2010-04-16T14:12:00Z-
dc.date.issued2004-
dc.identifier.citationInternational Journal of Computer Vision, 57(2), p. 107-120en
dc.identifier.issn1573-1405en
dc.identifier.issn0920-5691en
dc.identifier.urihttps://hdl.handle.net/1959.11/5607-
dc.description.abstractThe use of optical character recognition (OCR) has achieved considerable success in the sorting of machine-printed mail. The automatic reading of unconstrained handwritten addresses however, is less successful. This is due to the high error rate caused by the wide variability of handwriting styles and writing implements. This paper describes a strategy for automatic handwritten address reading which integrates a postcode recognition system with a hybrid verification stage. The hybrid verification system seeks to reduce the error rate by correlating the postcode against features extracted and words recognised from the remainder of the handwritten address. Novel use of syntactic features extracted from words has resulted in a significant reduction in the error rate while keeping the recognition rate high. Experimental results on a testset of 1,071 typical Singapore addresses showed a significant improvements from 24.0% error rate, 71.2% correct recognition rate, and 4.8% rejection rate using "raw" OCR postcode recognition to 0.4% error rate, 65.1% correct recognition rate, and 34.5% rejection rate using the hybrid verification approach. The performance of the approach compares favourably with the currently installed commercial system at Singapore Post, which achieved 0.7% error rate, 47.8% correct recognition rate, and 51.5% rejection rate for 6-digit postcode using the same test data.en
dc.languageenen
dc.publisherKluwer Academic Publishersen
dc.relation.ispartofInternational Journal of Computer Visionen
dc.titleA New Hybrid Approach to Handwritten Address Verificationen
dc.typeJournal Articleen
dc.identifier.doi10.1023/B:VISI.0000013085.47268.e8en
dc.subject.keywordsArtificial Intelligence and Image Processingen
dc.subject.keywordsComputer Visionen
dc.subject.keywordsImage Processingen
local.contributor.firstnameC Ken
local.contributor.firstnameGrahamen
local.subject.for2008080199 Artificial Intelligence and Image Processing not elsewhere classifieden
local.subject.for2008080106 Image Processingen
local.subject.for2008080104 Computer Visionen
local.subject.seo2008810199 Defence not elsewhere classifieden
local.subject.seo2008810107 National Securityen
local.subject.seo2008890299 Computer Software and Services not elsewhere classifieden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcleedham@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20100415-111943en
local.publisher.placeNetherlandsen
local.format.startpage107en
local.format.endpage120en
local.identifier.scopusid2142758135en
local.peerreviewedYesen
local.identifier.volume57en
local.identifier.issue2en
local.contributor.lastnameLeeen
local.contributor.lastnameLeedhamen
dc.identifier.staffune-id:cleedhamen
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:5739en
dc.identifier.academiclevelAcademicen
local.title.maintitleA New Hybrid Approach to Handwritten Address Verificationen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorLee, C Ken
local.search.authorLeedham, Grahamen
local.uneassociationUnknownen
local.year.published2004en
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

5
checked on Dec 7, 2024

Page view(s)

1,148
checked on May 26, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.