Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/53893
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bleile, Bea | en |
dc.contributor.author | Garin, Adélie | en |
dc.contributor.author | Heiss, Teresa | en |
dc.contributor.author | Maggs, Kelly | en |
dc.contributor.author | Robins, Vanessa | en |
local.source.editor | Editor(s): Ellen Gasparovic, Vanessa Robins and Katharine Turner | en |
dc.date.accessioned | 2023-01-09T04:34:00Z | - |
dc.date.available | 2023-01-09T04:34:00Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Research in Computational Topology 2, p. 1-21 | en |
dc.identifier.isbn | 9783030955182 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/53893 | - |
dc.description.abstract | To compute the persistent homology of a grayscale digital image one needs to build a simplicial or cubical complex from it. For cubical complexes, the two commonly used constructions (corresponding to direct and indirect digital adjacencies) can give different results for the same image. The two constructions are almost dual to each other, and we use this relationship to extend and modify the cubical complexes to become dual filtered cell complexes. We derive a general relationship between the persistent homology of two dual filtered cell complexes, and also establish how various modifications to a filtered complex change the persistence diagram. Applying these results to images, we derive a method to transform the persistence diagram computed using one type of cubical complex into a persistence diagram for the other construction. This means software for computing persistent homology from images can now be easily adapted to produce results for either of the two cubical complex constructions without additional low-level code implementation. | en |
dc.language | en | en |
dc.publisher | Springer | en |
dc.relation.ispartof | Research in Computational Topology 2 | en |
dc.relation.ispartofseries | Association for Women in Mathematics Series | en |
dc.relation.isversionof | 1 | en |
dc.title | The Persistent Homology of Dual Digital Image Constructions | en |
dc.type | Book Chapter | en |
dc.identifier.doi | 10.1007/978-3-030-95519-9_1 | en |
dcterms.accessRights | Green | en |
local.contributor.firstname | Bea | en |
local.contributor.firstname | Adélie | en |
local.contributor.firstname | Teresa | en |
local.contributor.firstname | Kelly | en |
local.contributor.firstname | Vanessa | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | bbleile@une.edu.au | en |
local.output.category | B1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | Cham, Switzerland | en |
local.identifier.totalchapters | 12 | en |
local.format.startpage | 1 | en |
local.format.endpage | 21 | en |
local.series.number | 30 | en |
local.url.open | https://arxiv.org/abs/2102.11397 | en |
local.peerreviewed | Yes | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Bleile | en |
local.contributor.lastname | Garin | en |
local.contributor.lastname | Heiss | en |
local.contributor.lastname | Maggs | en |
local.contributor.lastname | Robins | en |
dc.identifier.staff | une-id:bbleile | en |
local.profile.orcid | 0000-0003-2254-6832 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/53893 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | The Persistent Homology of Dual Digital Image Constructions | en |
local.output.categorydescription | B1 Chapter in a Scholarly Book | en |
local.search.author | Bleile, Bea | en |
local.search.author | Garin, Adélie | en |
local.search.author | Heiss, Teresa | en |
local.search.author | Maggs, Kelly | en |
local.search.author | Robins, Vanessa | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.isrevision | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2022 | en |
local.subject.for2020 | 490399 Numerical and computational mathematics not elsewhere classified | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
local.subject.seo2020 | 280115 Expanding knowledge in the information and computing sciences | en |
local.profile.affiliationtype | UNE Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
local.profile.affiliationtype | External Affiliation | en |
Appears in Collections: | Book Chapter School of Science and Technology |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
2
checked on Dec 7, 2024
Page view(s)
242
checked on Mar 7, 2023
Download(s)
4
checked on Mar 7, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.