Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/51812
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQuinn, Thomas Pen
dc.contributor.authorErb, Ionasen
dc.contributor.authorGloor, Gregen
dc.contributor.authorNotredame, Cedricen
dc.contributor.authorRichardson, Mark Fen
dc.contributor.authorCrowley, Tamsyn Men
dc.date.accessioned2022-04-29T00:22:49Z-
dc.date.available2022-04-29T00:22:49Z-
dc.date.issued2019-09-
dc.identifier.citationGigaScience, 8(9), p. 1-14en
dc.identifier.issn2047-217Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/51812-
dc.description.abstract<p><b>Background:</b> Next-generation sequencing (NGS) has made it possible to determine the sequence and relative abundance of all nucleotides in a biological or environmental sample. A cornerstone of NGS is the quantification of RNA or DNA presence as counts. However, these counts are not counts per se: their magnitude is determined arbitrarily by the sequencing depth, not by the input material. Consequently, counts must undergo normalization prior to use. Conventional normalization methods require a set of assumptions: they assume that the majority of features are unchanged and that all environments under study have the same carrying capacity for nucleotide synthesis. These assumptions are often untestable and may not hold when heterogeneous samples are compared. <b>Results:</b> Methods developed within the field of compositional data analysis offer a general solution that is assumption-free and valid for all data. Herein, we synthesize the extant literature to provide a concise guide on how to apply compositional data analysis to NGS count data. <b>Conclusions:</b> In highlighting the limitations of total library size, effective library size, and spike-in normalizations, we propose the log-ratio transformation as a general solution to answer the question, "Relative to some important activity of the cell, what is changing?"</p>en
dc.languageenen
dc.publisherBioMed Central Ltden
dc.relation.ispartofGigaScienceen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleA field guide for the compositional analysis of any-omics dataen
dc.typeJournal Articleen
dc.identifier.doi10.1093/gigascience/giz107en
dc.identifier.pmid31544212en
dcterms.accessRightsUNE Greenen
dc.subject.keywordsScience & Technology - Other Topicsen
dc.subject.keywordsBiologyen
dc.subject.keywordsMultidisciplinary Sciencesen
dc.subject.keywordsLife Sciences & Biomedicine - Other Topicsen
local.contributor.firstnameThomas Pen
local.contributor.firstnameIonasen
local.contributor.firstnameGregen
local.contributor.firstnameCedricen
local.contributor.firstnameMark Fen
local.contributor.firstnameTamsyn Men
local.profile.schoolPoultry Hub Australiaen
local.profile.emailtcrowle5@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeUnited Kingdomen
local.format.startpage1en
local.format.endpage14en
local.identifier.scopusid85072557920en
local.peerreviewedYesen
local.identifier.volume8en
local.identifier.issue9en
local.access.fulltextYesen
local.contributor.lastnameQuinnen
local.contributor.lastnameErben
local.contributor.lastnameGlooren
local.contributor.lastnameNotredameen
local.contributor.lastnameRichardsonen
local.contributor.lastnameCrowleyen
dc.identifier.staffune-id:tcrowle5en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/51812en
local.date.onlineversion2019-09-23-
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA field guide for the compositional analysis of any-omics dataen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorQuinn, Thomas Pen
local.search.authorErb, Ionasen
local.search.authorGloor, Gregen
local.search.authorNotredame, Cedricen
local.search.authorRichardson, Mark Fen
local.search.authorCrowley, Tamsyn Men
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/7c43d10c-ceb9-4195-b94a-c9cc6a529f2fen
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000489272100001en
local.year.available2019en
local.year.published2019en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/7c43d10c-ceb9-4195-b94a-c9cc6a529f2fen
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/7c43d10c-ceb9-4195-b94a-c9cc6a529f2fen
local.subject.for2020310205 Proteomics and metabolomicsen
local.subject.seo2020280102 Expanding knowledge in the biological sciencesen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
openpublished/AFieldCrowley2019JournalArticle.pdfPublished version3.61 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

156
checked on Nov 30, 2024

Page view(s)

1,034
checked on May 19, 2024

Download(s)

22
checked on May 19, 2024
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons