Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/51812
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Quinn, Thomas P | en |
dc.contributor.author | Erb, Ionas | en |
dc.contributor.author | Gloor, Greg | en |
dc.contributor.author | Notredame, Cedric | en |
dc.contributor.author | Richardson, Mark F | en |
dc.contributor.author | Crowley, Tamsyn M | en |
dc.date.accessioned | 2022-04-29T00:22:49Z | - |
dc.date.available | 2022-04-29T00:22:49Z | - |
dc.date.issued | 2019-09 | - |
dc.identifier.citation | GigaScience, 8(9), p. 1-14 | en |
dc.identifier.issn | 2047-217X | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/51812 | - |
dc.description.abstract | <p><b>Background:</b> Next-generation sequencing (NGS) has made it possible to determine the sequence and relative abundance of all nucleotides in a biological or environmental sample. A cornerstone of NGS is the quantification of RNA or DNA presence as counts. However, these counts are not counts per se: their magnitude is determined arbitrarily by the sequencing depth, not by the input material. Consequently, counts must undergo normalization prior to use. Conventional normalization methods require a set of assumptions: they assume that the majority of features are unchanged and that all environments under study have the same carrying capacity for nucleotide synthesis. These assumptions are often untestable and may not hold when heterogeneous samples are compared. <b>Results:</b> Methods developed within the field of compositional data analysis offer a general solution that is assumption-free and valid for all data. Herein, we synthesize the extant literature to provide a concise guide on how to apply compositional data analysis to NGS count data. <b>Conclusions:</b> In highlighting the limitations of total library size, effective library size, and spike-in normalizations, we propose the log-ratio transformation as a general solution to answer the question, "Relative to some important activity of the cell, what is changing?"</p> | en |
dc.language | en | en |
dc.publisher | BioMed Central Ltd | en |
dc.relation.ispartof | GigaScience | en |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | A field guide for the compositional analysis of any-omics data | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1093/gigascience/giz107 | en |
dc.identifier.pmid | 31544212 | en |
dcterms.accessRights | UNE Green | en |
dc.subject.keywords | Science & Technology - Other Topics | en |
dc.subject.keywords | Biology | en |
dc.subject.keywords | Multidisciplinary Sciences | en |
dc.subject.keywords | Life Sciences & Biomedicine - Other Topics | en |
local.contributor.firstname | Thomas P | en |
local.contributor.firstname | Ionas | en |
local.contributor.firstname | Greg | en |
local.contributor.firstname | Cedric | en |
local.contributor.firstname | Mark F | en |
local.contributor.firstname | Tamsyn M | en |
local.profile.school | Poultry Hub Australia | en |
local.profile.email | tcrowle5@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.publisher.place | United Kingdom | en |
local.format.startpage | 1 | en |
local.format.endpage | 14 | en |
local.identifier.scopusid | 85072557920 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 8 | en |
local.identifier.issue | 9 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Quinn | en |
local.contributor.lastname | Erb | en |
local.contributor.lastname | Gloor | en |
local.contributor.lastname | Notredame | en |
local.contributor.lastname | Richardson | en |
local.contributor.lastname | Crowley | en |
dc.identifier.staff | une-id:tcrowle5 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:1959.11/51812 | en |
local.date.onlineversion | 2019-09-23 | - |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | A field guide for the compositional analysis of any-omics data | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Quinn, Thomas P | en |
local.search.author | Erb, Ionas | en |
local.search.author | Gloor, Greg | en |
local.search.author | Notredame, Cedric | en |
local.search.author | Richardson, Mark F | en |
local.search.author | Crowley, Tamsyn M | en |
local.open.fileurl | https://rune.une.edu.au/web/retrieve/7c43d10c-ceb9-4195-b94a-c9cc6a529f2f | en |
local.uneassociation | Yes | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.identifier.wosid | 000489272100001 | en |
local.year.available | 2019 | en |
local.year.published | 2019 | en |
local.fileurl.open | https://rune.une.edu.au/web/retrieve/7c43d10c-ceb9-4195-b94a-c9cc6a529f2f | en |
local.fileurl.openpublished | https://rune.une.edu.au/web/retrieve/7c43d10c-ceb9-4195-b94a-c9cc6a529f2f | en |
local.subject.for2020 | 310205 Proteomics and metabolomics | en |
local.subject.seo2020 | 280102 Expanding knowledge in the biological sciences | en |
Appears in Collections: | Journal Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
openpublished/AFieldCrowley2019JournalArticle.pdf | Published version | 3.61 MB | Adobe PDF Download Adobe | View/Open |
SCOPUSTM
Citations
156
checked on Nov 30, 2024
Page view(s)
1,034
checked on May 19, 2024
Download(s)
22
checked on May 19, 2024
This item is licensed under a Creative Commons License