Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/4767
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuo, Yien
dc.contributor.authorKwan, Paul Hingen
dc.contributor.authorGao, Junbinen
local.source.editorEditor(s): IEEE: Institute of Electrical and Electronics Engineers Systems Computer Societyen
dc.date.accessioned2010-02-24T15:16:00Z-
dc.date.issued2007-
dc.identifier.citationProceedings of the Seventh IEEE International Conference on Data Mining Workshops, p. 319-324en
dc.identifier.isbn0769530338en
dc.identifier.urihttps://hdl.handle.net/1959.11/4767-
dc.description.abstractTwin kernel embedding (TKE) is a novel approach for visualization of non-vectorial objects. It preserves the similarity structure in high-dimensional or structured input data and reproduces it in a low dimensional latent space by matching the similarity relations represented by two kernel gram matrices, one kernel for the input data and the other for embedded data. However, there is no explicit mapping from the input data to their corresponding low dimensional embeddings. We obtain this mapping by including the back constraints on the data in TKE in this paper. This procedure still emphasizes the locality preserving. Further, the smooth mapping also solves the problem of so-called out-of-sample problem which is absent in the original TKE. Experimental evaluation on different real world data sets verifies the usefulness of this method.en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.ispartofProceedings of the Seventh IEEE International Conference on Data Mining Workshopsen
dc.titleTwin Kernel Embedding with Back Constraintsen
dc.typeConference Publicationen
dc.relation.conferenceICDMW 2007: Seventh IEEE International Conference on Data Mining Workshopsen
dc.identifier.doi10.1109/ICDMW.2007.15en
dc.subject.keywordsPattern Recognition and Data Miningen
local.contributor.firstnameYien
local.contributor.firstnamePaul Hingen
local.contributor.firstnameJunbinen
local.subject.for2008080109 Pattern Recognition and Data Miningen
local.subject.seo2008890201 Application Software Packages (excl. Computer Games)en
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailyguo4@une.edu.auen
local.profile.emailwkwan2@une.edu.auen
local.profile.emailjgao@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordpes:5533en
local.date.conference28th October - 31st October, 2007en
local.conference.placeOmaha, United States of Americaen
local.publisher.placeLos Alamitos, United States of Americaen
local.format.startpage319en
local.format.endpage324en
local.peerreviewedYesen
local.contributor.lastnameGuoen
local.contributor.lastnameKwanen
local.contributor.lastnameGaoen
dc.identifier.staffune-id:yguo4en
dc.identifier.staffune-id:wkwan2en
dc.identifier.staffune-id:jgaoen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:4883en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleTwin Kernel Embedding with Back Constraintsen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsICDMW 2007: Seventh IEEE International Conference on Data Mining Workshops, Omaha, United States of America, 28th - 31st October, 2007en
local.search.authorGuo, Yien
local.search.authorKwan, Paul Hingen
local.search.authorGao, Junbinen
local.uneassociationUnknownen
local.year.published2007en
local.date.start2007-10-28-
local.date.end2007-10-31-
Appears in Collections:Conference Publication
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 30, 2024

Page view(s)

1,278
checked on Aug 11, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.