Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/4514
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Guo, Yi | en |
dc.contributor.author | Kwan, Paul Hing | en |
dc.contributor.author | Gao, Junbin | en |
local.source.editor | Editor(s): Reda Alhajj, Hong Gao, Xue Li, Jianzhong Li, Osmar R. Zaïane | en |
dc.date.accessioned | 2010-02-05T16:20:00Z | - |
dc.date.issued | 2007 | - |
dc.identifier.citation | Advanced Data Mining and Applications: Proceedings of The 3rd International Conference on Advanced Data Mining Applications, v.4632, p. 227-238 | en |
dc.identifier.isbn | 9783540738701 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/4514 | - |
dc.description.abstract | Biometric data like fingerprints are often highly structured and of high dimension. The "curse of dimensionality" poses great challenge to subsequent pattern recognition algorithms including neural networks due to high computational complexity. A common approach is to apply dimensionality reduction (DR) to project the original data onto a lower dimensional space that preserves most of the useful information. Recently, we proposed Twin Kernel Embedding (TKE) that processes structured or non-vectorial data directly without vectorization. Here, we apply this method to clustering and visualizing fingerprints in a 2-dimensional space. It works by learning an optimal kernel in the latent space from a distance metric defined on the input fingerprints instead of a kernel. The outputs are the embeddings of the fingerprints and a kernel Gram matrix in the latent space that can be used in subsequent learning procedures like Support Vector Machine (SVM) for classification or recognition. Experimental results confirmed the usefulness of the proposed method. | en |
dc.language | en | en |
dc.publisher | Springer | en |
dc.relation.ispartof | Advanced Data Mining and Applications: Proceedings of The 3rd International Conference on Advanced Data Mining Applications | en |
dc.title | Learning Optimal Kernel from Distance Metric in Twin Kernel Embedding for Dimensionality Reduction and Visualization of Fingerprints | en |
dc.type | Conference Publication | en |
dc.relation.conference | ADMA 2007: 3rd International Conference on Advanced Data Mining Applications | en |
dc.identifier.doi | 10.1007/978-3-540-73871-8_22 | en |
dc.subject.keywords | Pattern Recognition and Data Mining | en |
local.contributor.firstname | Yi | en |
local.contributor.firstname | Paul Hing | en |
local.contributor.firstname | Junbin | en |
local.subject.for2008 | 080109 Pattern Recognition and Data Mining | en |
local.subject.seo2008 | 890201 Application Software Packages (excl. Computer Games) | en |
local.profile.school | School of Science and Technology | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | yguo4@une.edu.au | en |
local.profile.email | wkwan2@une.edu.au | en |
local.profile.email | jgao@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | pes:5536 | en |
local.date.conference | 6th - 8th August, 2007 | en |
local.conference.place | Harbin, China | en |
local.publisher.place | Berlin, Germany | en |
local.format.startpage | 227 | en |
local.format.endpage | 238 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 4632 | en |
local.contributor.lastname | Guo | en |
local.contributor.lastname | Kwan | en |
local.contributor.lastname | Gao | en |
dc.identifier.staff | une-id:yguo4 | en |
dc.identifier.staff | une-id:wkwan2 | en |
dc.identifier.staff | une-id:jgao | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:4621 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Learning Optimal Kernel from Distance Metric in Twin Kernel Embedding for Dimensionality Reduction and Visualization of Fingerprints | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.conference.details | ADMA 2007: 3rd International Conference on Advanced Data Mining Applications, Harbin, China, 6th - 8th August, 2007 | en |
local.search.author | Guo, Yi | en |
local.search.author | Kwan, Paul Hing | en |
local.search.author | Gao, Junbin | en |
local.uneassociation | Unknown | en |
local.year.published | 2007 | en |
local.date.start | 2007-08-06 | - |
local.date.end | 2007-08-08 | - |
Appears in Collections: | Conference Publication |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
1,260
checked on Jun 23, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.