Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/29625
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCrabbe, Richard Azuen
dc.contributor.authorLamb, David Williamen
dc.contributor.authorEdwards, Clareen
dc.date.accessioned2020-11-05T03:39:17Z-
dc.date.available2020-11-05T03:39:17Z-
dc.date.issued2019-01-27-
dc.identifier.citationRemote Sensing, 11(3), p. 1-20en
dc.identifier.issn2072-4292en
dc.identifier.urihttps://hdl.handle.net/1959.11/29625-
dc.description.abstractIn livestock grazing environments, the knowledge of C3/C4 species composition of a pasture field is invaluable, since such information assists graziers in making decisions around fertilizer application and stocking rates. The general aim of this research was to explore the potential of multi-temporal Sentinel-1 (S1) Synthetic Aperture Radar (SAR) to discriminate between C3, C4, and mixed-C3/C4 compositions. In this study, three Random Forest (RF) classification models were created using features derived from polarimetric SAR (polSAR) and grey-level co-occurrence textural metrics (glcmTEX). The first RF model involved only polSAR features and produced a prediction accuracy of 68% with a Kappa coefficient of 0.49. The second RF model used glcmTEX features and produced prediction accuracies of 76%, 62%, and 75% for C3, C4, and mixed C3/C4 grasses, respectively. The glcmTEX model achieved an overall prediction accuracy of 73% with a Kappa coefficient of 0.57. The polSAR and glcmTEX features were then combined (COMB model) to improve upon their individual classification performances. The COMB model produced prediction accuracies of 89%, 81%, and 84% for C3, C4, and mixed C3/C4 pasture grasses, and an overall prediction accuracy of 86% with a Kappa coefficient of 0.77. The contribution of the various model features could be attributed to the changes in dominant species between sampling sites through time, not only because of climatic variability but also because of preferential grazing.en
dc.languageenen
dc.publisherMDPI AGen
dc.relation.ispartofRemote Sensingen
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleDiscriminating between C3, C4, and Mixed C3/C4 Pasture Grasses of a Grazed Landscape Using Multi-Temporal Sentinel-1a Dataen
dc.typeJournal Articleen
dc.identifier.doi10.3390/rs11030253en
dcterms.accessRightsUNE Greenen
local.contributor.firstnameRichard Azuen
local.contributor.firstnameDavid Williamen
local.contributor.firstnameClareen
local.subject.for2008070104 Agricultural Spatial Analysis and Modellingen
local.subject.for2008090905 Photogrammetry and Remote Sensingen
local.subject.seo2008830403 Native and Residual Pasturesen
local.profile.schoolOffice of Faculty of Science, Agriculture, Business and Lawen
local.profile.schoolSchool of Science and Technologyen
local.profile.emaildlamb@une.edu.auen
local.profile.emailkedwar30@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.publisher.placeSwitzerlanden
local.identifier.runningnumber253en
local.format.startpage1en
local.format.endpage20en
local.identifier.scopusid85061360424en
local.peerreviewedYesen
local.identifier.volume11en
local.identifier.issue3en
local.access.fulltextYesen
local.contributor.lastnameCrabbeen
local.contributor.lastnameLamben
local.contributor.lastnameEdwardsen
dc.identifier.staffune-id:dlamben
dc.identifier.staffune-id:kedwar30en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:1959.11/29625en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleDiscriminating between C3, C4, and Mixed C3/C4 Pasture Grasses of a Grazed Landscape Using Multi-Temporal Sentinel-1a Dataen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorCrabbe, Richard Azuen
local.search.authorLamb, David Williamen
local.search.authorEdwards, Clareen
local.open.fileurlhttps://rune.une.edu.au/web/retrieve/de7223d2-78ad-467d-9801-8c0cc7ec65aden
local.uneassociationYesen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.identifier.wosid000459944400041en
local.year.published2019en
local.fileurl.openhttps://rune.une.edu.au/web/retrieve/de7223d2-78ad-467d-9801-8c0cc7ec65aden
local.fileurl.openpublishedhttps://rune.une.edu.au/web/retrieve/de7223d2-78ad-467d-9801-8c0cc7ec65aden
local.subject.for2020300206 Agricultural spatial analysis and modellingen
local.subject.for2020401304 Photogrammetry and remote sensingen
local.subject.seo2020100503 Native and residual pasturesen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
openpublished/DiscriminatingLambEdwards2019JournalArticle.pdfPublished version8.18 MBAdobe PDF
Download Adobe
View/Open
Show simple item record

SCOPUSTM   
Citations

12
checked on Jan 11, 2025

Page view(s)

1,026
checked on Oct 22, 2023

Download(s)

20
checked on Oct 22, 2023
Google Media

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons