Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/2480
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gao, Junbin | en |
dc.contributor.author | Antolovich, Michael | en |
dc.contributor.author | Kwan, Paul Hing | en |
local.source.editor | Editor(s): W. Wobcke and M. Zhang | en |
dc.date.accessioned | 2009-10-13T15:52:00Z | - |
dc.date.issued | 2008 | - |
dc.identifier.citation | AI 2008: advances in artificial intelligence : 21st Australasian Joint Conference on Artificial Intelligence, Auckland, New Zealand, December 1-5, 2008, p. 318-324 | en |
dc.identifier.isbn | 978-3-540-89377-6 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/2480 | - |
dc.description.abstract | A new iterative procedure for solving regression problems with the so-called LASSO penalty is proposed by using generative Bayesian modeling and inference. The algorithm produces the anticipated parsimonious or sparse regression models that generalize well on unseen data. The proposed algorithm is quite robust and there is no need to specify any model hyperparameters. A comparison with state-of-the-art methods for constructing sparse regression models such as the relevance vector machine (RVM) and the local regularization assisted orthogonal least squares regression (LROLS) is given. | en |
dc.language | en | en |
dc.publisher | Springer | en |
dc.relation.ispartof | AI 2008: advances in artificial intelligence : 21st Australasian Joint Conference on Artificial Intelligence, Auckland, New Zealand, December 1-5, 2008 | en |
dc.relation.ispartofseries | Lecture notes in artificial intelligence | en |
dc.relation.ispartofseries | Lecture notes in computer science | en |
dc.relation.isversionof | 1 | en |
dc.title | L1 LASSO and its Bayesian Inference | en |
dc.type | Conference Publication | en |
dc.relation.conference | AI 2008: 21st Australasian Joint Conference on Artificial Intelligence | en |
dc.subject.keywords | Pattern Recognition and Data Mining | en |
local.contributor.firstname | Junbin | en |
local.contributor.firstname | Michael | en |
local.contributor.firstname | Paul Hing | en |
local.subject.for2008 | 080109 Pattern Recognition and Data Mining | en |
local.subject.seo2008 | 890299 Computer Software and Services not elsewhere classified | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | jgao@une.edu.au | en |
local.profile.email | wkwan2@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | pes:6773 | en |
local.date.conference | 1st - 5th December, 2008 | en |
local.conference.place | Auckland, New Zealand | en |
local.publisher.place | Berlin, Germany | en |
local.format.startpage | 318 | en |
local.format.endpage | 324 | en |
local.series.number | 5360 | en |
local.contributor.lastname | Gao | en |
local.contributor.lastname | Antolovich | en |
local.contributor.lastname | Kwan | en |
dc.identifier.staff | une-id:jgao | en |
dc.identifier.staff | une-id:wkwan2 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:2553 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | L1 LASSO and its Bayesian Inference | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.relation.url | http://nla.gov.au/anbd.bib-an44000781 | en |
local.conference.details | AI 2008: 21st Australasian Joint Conference on Artificial Intelligence, Auckland, New Zealand, December 1-5, 2008 | en |
local.search.author | Gao, Junbin | en |
local.search.author | Antolovich, Michael | en |
local.search.author | Kwan, Paul Hing | en |
local.uneassociation | Unknown | en |
local.year.published | 2008 | en |
local.date.start | 2008-12-01 | - |
local.date.end | 2008-12-05 | - |
Appears in Collections: | Conference Publication |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
1,056
checked on Mar 7, 2023
Download(s)
2
checked on Mar 7, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.