Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/22116
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMcKenzie, Marken
dc.contributor.authorLoxley, Peteren
dc.contributor.authorBillingsley, Williamen
dc.contributor.authorWong, Sebastienen
local.source.editorEditor(s): Peng W, Alahakoon D, Li Xen
dc.date.accessioned2017-11-06T13:14:00Z-
dc.date.issued2017-
dc.identifier.citationAI 2017: Advances in Artificial Intelligence, 10400(LNAI), p. 14-26en
dc.identifier.isbn9783319630045en
dc.identifier.isbn9783319630038en
dc.identifier.urihttps://hdl.handle.net/1959.11/22116-
dc.description.abstractThis research describes a study into the ability of a state of the art reinforcement learning algorithm to learn to perform multiple tasks. We demonstrate that the limitation of learning to performing two tasks can be mitigated with a competitive training method. We show that this approach results in improved generalization of the system when performing unforeseen tasks. The learning agent assessed is an altered version of the DeepMind deep Q–learner network (DQN), which has been demonstrated to outperform human players for a number of Atari 2600 games. The key findings of this paper is that there were significant degradations in performance when learning more than one game, and how this varies depends on both similarity and the comparative complexity of the two games.en
dc.languageenen
dc.publisherSpringeren
dc.relation.ispartofAI 2017: Advances in Artificial Intelligenceen
dc.relation.ispartofseriesLecture Notes in Computer Scienceen
dc.titleCompetitive reinforcement learning in Atari gamesen
dc.typeConference Publicationen
dc.relation.conferenceAI 2017: 30th Australasian Joint Conference on Artificial Intelligenceen
dc.identifier.doi10.1007/978-3-319-63004-5_2en
dc.subject.keywordsAdaptive Agents and Intelligent Roboticsen
dc.subject.keywordsNeural, Evolutionary and Fuzzy Computationen
local.contributor.firstnameMarken
local.contributor.firstnamePeteren
local.contributor.firstnameWilliamen
local.contributor.firstnameSebastienen
local.subject.for2008080101 Adaptive Agents and Intelligent Roboticsen
local.subject.for2008080108 Neural, Evolutionary and Fuzzy Computationen
local.subject.seo2008890203 Computer Gaming Softwareen
local.subject.seo2008970108 Expanding Knowledge in the Information and Computing Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailmark.colin.mckenzie@gmail.comen
local.profile.emailploxley@une.edu.auen
local.profile.emailwbilling@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-chute-20170819-120521en
local.date.conference19th August, 2017en
local.conference.placeMelbourne, Australiaen
local.publisher.placeGermanyen
local.format.startpage14en
local.format.endpage26en
local.identifier.scopusid85026736707en
local.series.issn1611-3349en
local.series.issn0302-9743en
local.peerreviewedYesen
local.identifier.volume10400en
local.identifier.issueLNAIen
local.contributor.lastnameMcKenzieen
local.contributor.lastnameLoxleyen
local.contributor.lastnameBillingsleyen
local.contributor.lastnameWongen
dc.identifier.staffune-id:ploxleyen
dc.identifier.staffune-id:wbillingen
local.profile.orcid0000-0003-3659-734Xen
local.profile.orcid0000-0002-1720-9076en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:22306en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleCompetitive reinforcement learning in Atari gamesen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsAI 2017: 30th Australasian Joint Conference on Artificial Intelligence, Melbourne, Australia, 19th August, 2017en
local.search.authorMcKenzie, Marken
local.search.authorLoxley, Peteren
local.search.authorBillingsley, Williamen
local.search.authorWong, Sebastienen
local.uneassociationUnknownen
local.year.published2017en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/0abd4cd8-637c-416b-af34-291b4503af52en
local.subject.for2020461105 Reinforcement learningen
local.subject.seo2020280115 Expanding knowledge in the information and computing sciencesen
local.subject.seo2020220401 Application software packagesen
local.subject.seo2020220501 Animation, video games and computer generated imagery servicesen
dc.notification.tokena3ecffb5-9783-4225-8c3f-99a4aca88f29en
local.codeupdate.date2021-11-09T12:25:29.114en
local.codeupdate.epersonwbilling@une.edu.auen
local.codeupdate.finalisedtrueen
local.original.for2020undefineden
local.original.for2020undefineden
local.original.seo2020220401 Application software packagesen
local.original.seo2020220501 Animation, video games and computer generated imagery servicesen
local.original.seo2020280115 Expanding knowledge in the information and computing sciencesen
local.date.start2017-08-19-
Appears in Collections:Conference Publication
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

8
checked on Dec 28, 2024

Page view(s)

2,590
checked on Sep 24, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.