Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/22072
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Guo-Bo | en |
dc.contributor.author | Lee, Sang Hong | en |
dc.contributor.author | Kutalik, Zoltan | en |
dc.contributor.author | Loos, Ruth J F | en |
dc.contributor.author | Frayling, Timothy M | en |
dc.contributor.author | Hirschhorn, Joel N | en |
dc.contributor.author | Yang, Jian | en |
dc.contributor.author | Wray, Naomi R | en |
dc.contributor.author | Visscher, Peter M | en |
dc.contributor.author | Robinson, Matthew R | en |
dc.contributor.author | Trzaskowski, Maciej | en |
dc.contributor.author | Zhu, Zhi-Xiang | en |
dc.contributor.author | Winkler, Thomas W | en |
dc.contributor.author | Day, Felix R | en |
dc.contributor.author | Croteau-Chonka, Damien C | en |
dc.contributor.author | Wood, Andrew R | en |
dc.contributor.author | Locke, Adam E | en |
dc.date.accessioned | 2017-10-27T16:43:00Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | European Journal of Human Genetics, 25(1), p. 137-146 | en |
dc.identifier.issn | 1476-5438 | en |
dc.identifier.issn | 1018-4813 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/22072 | - |
dc.description.abstract | Genome-wide association studies (GWASs) have been successful in discovering SNP trait associations for many quantitative traits and common diseases. Typically, the effect sizes of SNP alleles are very small and this requires large genome-wide association meta-analyses (GWAMAs) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study, we propose four metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We propose methods to examine the concordance between demographic information, and summary statistics and methods to investigate sample overlap. (I) We use the population genetics Fst statistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. (II) We conduct principal component analysis based on reported allele frequencies, and are able to recover the ancestral information for each cohort. (III) We propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. (IV) To quantify unknown sample overlap across all pairs of cohorts, we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy. | en |
dc.language | en | en |
dc.publisher | Nature Publishing Group | en |
dc.relation.ispartof | European Journal of Human Genetics | en |
dc.title | Across-cohort QC analyses of GWAS summary statistics from complex traits | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1038/ejhg.2016.106 | en |
dcterms.accessRights | Gold | en |
dc.subject.keywords | Quantitative Genetics (incl. Disease and Trait Mapping Genetics) | en |
local.contributor.firstname | Guo-Bo | en |
local.contributor.firstname | Sang Hong | en |
local.contributor.firstname | Zoltan | en |
local.contributor.firstname | Ruth J F | en |
local.contributor.firstname | Timothy M | en |
local.contributor.firstname | Joel N | en |
local.contributor.firstname | Jian | en |
local.contributor.firstname | Naomi R | en |
local.contributor.firstname | Peter M | en |
local.contributor.firstname | Matthew R | en |
local.contributor.firstname | Maciej | en |
local.contributor.firstname | Zhi-Xiang | en |
local.contributor.firstname | Thomas W | en |
local.contributor.firstname | Felix R | en |
local.contributor.firstname | Damien C | en |
local.contributor.firstname | Andrew R | en |
local.contributor.firstname | Adam E | en |
local.subject.for2008 | 060412 Quantitative Genetics (incl. Disease and Trait Mapping Genetics) | en |
local.subject.seo2008 | 920110 Inherited Diseases (incl. Gene Therapy) | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | slee38@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20171024-151151 | en |
local.publisher.place | United Kingdom | en |
local.format.startpage | 137 | en |
local.format.endpage | 146 | en |
local.url.open | https://www.nature.com/ejhg/journal/v25/n1/full/ejhg2016106a.html | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 25 | en |
local.identifier.issue | 1 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Chen | en |
local.contributor.lastname | Lee | en |
local.contributor.lastname | Kutalik | en |
local.contributor.lastname | Loos | en |
local.contributor.lastname | Frayling | en |
local.contributor.lastname | Hirschhorn | en |
local.contributor.lastname | Yang | en |
local.contributor.lastname | Wray | en |
local.contributor.lastname | Visscher | en |
local.contributor.lastname | Robinson | en |
local.contributor.lastname | Trzaskowski | en |
local.contributor.lastname | Zhu | en |
local.contributor.lastname | Winkler | en |
local.contributor.lastname | Day | en |
local.contributor.lastname | Croteau-Chonka | en |
local.contributor.lastname | Wood | en |
local.contributor.lastname | Locke | en |
dc.identifier.staff | une-id:slee38 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:22261 | en |
local.identifier.handle | https://hdl.handle.net/1959.11/22072 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Across-cohort QC analyses of GWAS summary statistics from complex traits | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Chen, Guo-Bo | en |
local.search.author | Lee, Sang Hong | en |
local.search.author | Kutalik, Zoltan | en |
local.search.author | Loos, Ruth J F | en |
local.search.author | Frayling, Timothy M | en |
local.search.author | Hirschhorn, Joel N | en |
local.search.author | Yang, Jian | en |
local.search.author | Wray, Naomi R | en |
local.search.author | Visscher, Peter M | en |
local.search.author | Robinson, Matthew R | en |
local.search.author | Trzaskowski, Maciej | en |
local.search.author | Zhu, Zhi-Xiang | en |
local.search.author | Winkler, Thomas W | en |
local.search.author | Day, Felix R | en |
local.search.author | Croteau-Chonka, Damien C | en |
local.search.author | Wood, Andrew R | en |
local.search.author | Locke, Adam E | en |
local.uneassociation | Unknown | en |
local.identifier.wosid | 000394116100021 | en |
local.year.published | 2016 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/817a2b0c-9ef2-4ad0-8f6e-258b473211fc | en |
local.subject.for2020 | 310506 Gene mapping | en |
local.subject.seo2020 | 200101 Diagnosis of human diseases and conditions | en |
Appears in Collections: | Journal Article |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
17
checked on Nov 23, 2024
Page view(s)
1,092
checked on Sep 24, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.