Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/22072
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Guo-Boen
dc.contributor.authorLee, Sang Hongen
dc.contributor.authorKutalik, Zoltanen
dc.contributor.authorLoos, Ruth J Fen
dc.contributor.authorFrayling, Timothy Men
dc.contributor.authorHirschhorn, Joel Nen
dc.contributor.authorYang, Jianen
dc.contributor.authorWray, Naomi Ren
dc.contributor.authorVisscher, Peter Men
dc.contributor.authorRobinson, Matthew Ren
dc.contributor.authorTrzaskowski, Maciejen
dc.contributor.authorZhu, Zhi-Xiangen
dc.contributor.authorWinkler, Thomas Wen
dc.contributor.authorDay, Felix Ren
dc.contributor.authorCroteau-Chonka, Damien Cen
dc.contributor.authorWood, Andrew Ren
dc.contributor.authorLocke, Adam Een
dc.date.accessioned2017-10-27T16:43:00Z-
dc.date.issued2016-
dc.identifier.citationEuropean Journal of Human Genetics, 25(1), p. 137-146en
dc.identifier.issn1476-5438en
dc.identifier.issn1018-4813en
dc.identifier.urihttps://hdl.handle.net/1959.11/22072-
dc.description.abstractGenome-wide association studies (GWASs) have been successful in discovering SNP trait associations for many quantitative traits and common diseases. Typically, the effect sizes of SNP alleles are very small and this requires large genome-wide association meta-analyses (GWAMAs) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study, we propose four metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We propose methods to examine the concordance between demographic information, and summary statistics and methods to investigate sample overlap. (I) We use the population genetics Fst statistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. (II) We conduct principal component analysis based on reported allele frequencies, and are able to recover the ancestral information for each cohort. (III) We propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. (IV) To quantify unknown sample overlap across all pairs of cohorts, we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy.en
dc.languageenen
dc.publisherNature Publishing Groupen
dc.relation.ispartofEuropean Journal of Human Geneticsen
dc.titleAcross-cohort QC analyses of GWAS summary statistics from complex traitsen
dc.typeJournal Articleen
dc.identifier.doi10.1038/ejhg.2016.106en
dcterms.accessRightsGolden
dc.subject.keywordsQuantitative Genetics (incl. Disease and Trait Mapping Genetics)en
local.contributor.firstnameGuo-Boen
local.contributor.firstnameSang Hongen
local.contributor.firstnameZoltanen
local.contributor.firstnameRuth J Fen
local.contributor.firstnameTimothy Men
local.contributor.firstnameJoel Nen
local.contributor.firstnameJianen
local.contributor.firstnameNaomi Ren
local.contributor.firstnamePeter Men
local.contributor.firstnameMatthew Ren
local.contributor.firstnameMaciejen
local.contributor.firstnameZhi-Xiangen
local.contributor.firstnameThomas Wen
local.contributor.firstnameFelix Ren
local.contributor.firstnameDamien Cen
local.contributor.firstnameAndrew Ren
local.contributor.firstnameAdam Een
local.subject.for2008060412 Quantitative Genetics (incl. Disease and Trait Mapping Genetics)en
local.subject.seo2008920110 Inherited Diseases (incl. Gene Therapy)en
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailslee38@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20171024-151151en
local.publisher.placeUnited Kingdomen
local.format.startpage137en
local.format.endpage146en
local.url.openhttps://www.nature.com/ejhg/journal/v25/n1/full/ejhg2016106a.htmlen
local.peerreviewedYesen
local.identifier.volume25en
local.identifier.issue1en
local.access.fulltextYesen
local.contributor.lastnameChenen
local.contributor.lastnameLeeen
local.contributor.lastnameKutaliken
local.contributor.lastnameLoosen
local.contributor.lastnameFraylingen
local.contributor.lastnameHirschhornen
local.contributor.lastnameYangen
local.contributor.lastnameWrayen
local.contributor.lastnameVisscheren
local.contributor.lastnameRobinsonen
local.contributor.lastnameTrzaskowskien
local.contributor.lastnameZhuen
local.contributor.lastnameWinkleren
local.contributor.lastnameDayen
local.contributor.lastnameCroteau-Chonkaen
local.contributor.lastnameWooden
local.contributor.lastnameLockeen
dc.identifier.staffune-id:slee38en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:22261en
local.identifier.handlehttps://hdl.handle.net/1959.11/22072en
dc.identifier.academiclevelAcademicen
local.title.maintitleAcross-cohort QC analyses of GWAS summary statistics from complex traitsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorChen, Guo-Boen
local.search.authorLee, Sang Hongen
local.search.authorKutalik, Zoltanen
local.search.authorLoos, Ruth J Fen
local.search.authorFrayling, Timothy Men
local.search.authorHirschhorn, Joel Nen
local.search.authorYang, Jianen
local.search.authorWray, Naomi Ren
local.search.authorVisscher, Peter Men
local.search.authorRobinson, Matthew Ren
local.search.authorTrzaskowski, Maciejen
local.search.authorZhu, Zhi-Xiangen
local.search.authorWinkler, Thomas Wen
local.search.authorDay, Felix Ren
local.search.authorCroteau-Chonka, Damien Cen
local.search.authorWood, Andrew Ren
local.search.authorLocke, Adam Een
local.uneassociationUnknownen
local.identifier.wosid000394116100021en
local.year.published2016en
local.fileurl.closedpublishedhttps://rune.une.edu.au/web/retrieve/817a2b0c-9ef2-4ad0-8f6e-258b473211fcen
local.subject.for2020310506 Gene mappingen
local.subject.seo2020200101 Diagnosis of human diseases and conditionsen
Appears in Collections:Journal Article
Files in This Item:
3 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

17
checked on Nov 23, 2024

Page view(s)

1,092
checked on Sep 24, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.