Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/20241
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Harris, Adam | en |
dc.contributor.author | Paternain, Gabriel P | en |
dc.date.accessioned | 2017-03-24T12:36:00Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Proceedings of the American Mathematical Society, 144(4), p. 1725-1734 | en |
dc.identifier.issn | 1088-6826 | en |
dc.identifier.issn | 0002-9939 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/20241 | - |
dc.description.abstract | We consider a closed orientable Riemannian 3-manifold (M,g) and a vector field X with unit norm whose integral curves are geodesics of g. Any such vector field determines naturally a 2-plane bundle contained in the kernel of the contact form of the geodesic flow of g. We study when this 2-plane bundle remains invariant under two natural almost complex structures. We also provide a geometric condition that ensures that X is the Reeb vector field of the 1-form λ obtained by contracting g with X. We apply these results to the case of great circle flows on the 3-sphere with two objectives in mind: one is to recover the result in [4] that a volume preserving great circle flow must be Hopf and the other is to characterize in a similar fashion great circle flows that are conformal relative to the almost complex structure in the kernel of λ given by rotation by π/2 according to the orientation of M. | en |
dc.language | en | en |
dc.publisher | American Mathematical Society | en |
dc.relation.ispartof | Proceedings of the American Mathematical Society | en |
dc.title | Conformal Great Circle Flows on the 3-Sphere | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1090/proc/12819 | en |
dc.subject.keywords | Algebraic and Differential Geometry | en |
local.contributor.firstname | Adam | en |
local.contributor.firstname | Gabriel P | en |
local.subject.for2008 | 010102 Algebraic and Differential Geometry | en |
local.subject.seo2008 | 970101 Expanding Knowledge in the Mathematical Sciences | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | aharris5@une.edu.au | en |
local.profile.email | g.p.paternain@dpmms.cam.ac.uk | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20170228-112914 | en |
local.publisher.place | United States of America | en |
local.format.startpage | 1725 | en |
local.format.endpage | 1734 | en |
local.identifier.scopusid | 84955502986 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 144 | en |
local.identifier.issue | 4 | en |
local.contributor.lastname | Harris | en |
local.contributor.lastname | Paternain | en |
dc.identifier.staff | une-id:aharris5 | en |
local.profile.orcid | 0000-0002-1259-1122 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:20439 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Conformal Great Circle Flows on the 3-Sphere | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Harris, Adam | en |
local.search.author | Paternain, Gabriel P | en |
local.uneassociation | Unknown | en |
local.identifier.wosid | 000369298400032 | en |
local.year.published | 2016 | en |
local.fileurl.closedpublished | https://rune.une.edu.au/web/retrieve/bba5275e-68db-4ec1-a2ed-fb165aeeaebc | en |
local.subject.for2020 | 490402 Algebraic and differential geometry | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
6
checked on Jul 6, 2024
Page view(s)
2,280
checked on May 5, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.