Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/19870
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRahman, Muhammad Moshiuren
dc.contributor.authorRobson, Andrewen
dc.date.accessioned2017-01-23T09:35:00Z-
dc.date.issued2016-
dc.identifier.citationAdvances in Remote Sensing, 5(2), p. 93-102en
dc.identifier.issn2169-2688en
dc.identifier.issn2169-267Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/19870-
dc.description.abstractQuantifying sugarcane production is critical for a wide range of applications, including crop management and decision making processes such as harvesting, storage, and forward selling. This study explored a novel model for predicting sugarcane yield in Bundaberg region from time series Landsat data. From the freely available Landsat archive, 98 cloud free (<40%) Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) images, acquired between November 15th to July 31st (2001-2015) were sourced for this study. The images were masked using the field boundary layer vector files of each year and the GNDVI was calculated. An analysis of average green normalized difference vegetation index (GNDVI) values from all sugarcane crops grown within the Bundaberg region over the 15 year period identified the beginning of April as the peak growth stage and, therefore, the optimum time for satellite image based yield forecasting. As the GNDVI is an indicator of crop vigor, the model derived maximum GNDVI was regressed against historical sugarcane yield data, which showed a significant correlation with R² = 0.69 and RMSE = 4.2 t/ha. Results showed that the model derived maximum GNDVI from Landsat imagery would be a feasible and a modest technique to predict sugarcane yield in Bundaberg region.en
dc.languageenen
dc.publisherScientific Research Publishing, Incen
dc.relation.ispartofAdvances in Remote Sensingen
dc.titleA Novel Approach for Sugarcane Yield Prediction Using Landsat Time Series Imagery: A Case Study on Bundaberg Regionen
dc.typeJournal Articleen
dc.identifier.doi10.4236/ars.2016.52008en
dcterms.accessRightsGolden
dc.subject.keywordsAgricultural Spatial Analysis and Modellingen
local.contributor.firstnameMuhammad Moshiuren
local.contributor.firstnameAndrewen
local.subject.for2008070104 Agricultural Spatial Analysis and Modellingen
local.subject.seo2008820304 Sugaren
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailmrahma37@une.edu.auen
local.profile.emailarobson7@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20170112-154729en
local.publisher.placeUnited States of Americaen
local.format.startpage93en
local.format.endpage102en
local.peerreviewedYesen
local.identifier.volume5en
local.identifier.issue2en
local.title.subtitleA Case Study on Bundaberg Regionen
local.access.fulltextYesen
local.contributor.lastnameRahmanen
local.contributor.lastnameRobsonen
dc.identifier.staffune-id:mrahma37en
dc.identifier.staffune-id:arobson7en
local.profile.orcid0000-0001-6430-0588en
local.profile.orcid0000-0001-5762-8980en
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:20062en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA Novel Approach for Sugarcane Yield Prediction Using Landsat Time Series Imageryen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorRahman, Muhammad Moshiuren
local.search.authorRobson, Andrewen
local.uneassociationUnknownen
local.year.published2016en
local.subject.for2020300206 Agricultural spatial analysis and modellingen
local.subject.seo2020260607 Sugaren
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

Page view(s)

1,524
checked on May 19, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.