Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/19328
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dwivedi, J | en |
dc.contributor.author | Sutcliffe, S | en |
dc.contributor.author | Easterbrook, L | en |
dc.contributor.author | Woods, Cindy | en |
dc.contributor.author | Maguire, G P | en |
dc.date.accessioned | 2016-08-10T14:59:00Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Heart, Lung and Circulation, 23(8), p. 737-742 | en |
dc.identifier.issn | 1444-2892 | en |
dc.identifier.issn | 1443-9506 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/19328 | - |
dc.description.abstract | 'Background' Coronary heart disease (CHD) places a major burden on the Australian health care system. Determining the likelihood of CHD in a patient presenting with chest pain can be particularly difficult in a remote setting where access to transportation and specialised investigations including myocardial stress studies and coronary angiography can be difficult and delayed. The objective is to develop a predictive model for determining the risk of CHD, including the value of high sensitivity C-reactive protein (hsCRP), in patients presenting with chest pain with a particular emphasis on resources and information likely to be available in a remote primary health care setting. 'Methods' A prospective, cross-sectional observational study of patients with no prior diagnosis of CHD presenting to a specialist chest pain assessment clinic at Cairns Hospital from November 2012 to May 2013. 'Results' Out of the 163 participants included in the study analyses, a total of 38 were classified as CHD likely (23.3% (95% CI 17.1-30.6)). Logistic regression modelling identified two factors that were independently associated with likely CHD, namely the presence of typical chest pain (OR 83.7 (95% CI 21.7-322.1)) and an abnormal baseline ECG (OR 12.8 (95% CI 1.9-86.0)). 'Conclusion' In this study, it was demonstrated that the presence of typical chest pain and an abnormal resting ECG, remain the cornerstone of predicting a subsequent diagnosis of CHD. This information is easily accessible in remote primary health care and should be utilised to expedite assessment in patients presenting with symptoms suggestive of CHD. | en |
dc.language | en | en |
dc.publisher | Elsevier Australia | en |
dc.relation.ispartof | Heart, Lung and Circulation | en |
dc.title | Predicting Coronary Heart Disease in Remote Settings: A Prospective, Cross-sectional Observational Study | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.hlc.2014.02.017 | en |
dc.subject.keywords | Cardiology (incl. Cardiovascular Diseases) | en |
local.contributor.firstname | J | en |
local.contributor.firstname | S | en |
local.contributor.firstname | L | en |
local.contributor.firstname | Cindy | en |
local.contributor.firstname | G P | en |
local.subject.for2008 | 110201 Cardiology (incl. Cardiovascular Diseases) | en |
local.subject.seo2008 | 920199 Clinical Health (Organs, Diseases and Abnormal Conditions) not elsewhere classified | en |
local.profile.school | School of Health | en |
local.profile.email | cwood30@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20160805-103252 | en |
local.publisher.place | Australia | en |
local.format.startpage | 737 | en |
local.format.endpage | 742 | en |
local.identifier.scopusid | 84904958496 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 23 | en |
local.identifier.issue | 8 | en |
local.title.subtitle | A Prospective, Cross-sectional Observational Study | en |
local.contributor.lastname | Dwivedi | en |
local.contributor.lastname | Sutcliffe | en |
local.contributor.lastname | Easterbrook | en |
local.contributor.lastname | Woods | en |
local.contributor.lastname | Maguire | en |
dc.identifier.staff | une-id:cwood30 | en |
local.profile.orcid | 0000-0001-5790-069X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:19524 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Predicting Coronary Heart Disease in Remote Settings | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Dwivedi, J | en |
local.search.author | Sutcliffe, S | en |
local.search.author | Easterbrook, L | en |
local.search.author | Woods, Cindy | en |
local.search.author | Maguire, G P | en |
local.uneassociation | Unknown | en |
local.year.published | 2014 | en |
local.subject.for2020 | 320101 Cardiology (incl. cardiovascular diseases) | en |
local.subject.seo2020 | 200199 Clinical health not elsewhere classified | en |
Appears in Collections: | Journal Article |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
1,150
checked on Apr 21, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.