Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/19179
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chatbri, Houssem | en |
dc.contributor.author | Kameyama, Keisuke | en |
dc.contributor.author | Kwan, Paul H | en |
dc.date.accessioned | 2016-06-21T16:57:00Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Proceedings of the Third IAPR Asian Conference on Pattern Recognition (ACPR 2015), p. 146-150 | en |
dc.identifier.isbn | 9781479961009 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/19179 | - |
dc.description.abstract | We introduce a method for content-based document image retrieval (CBDIR) of handwritten queries that is both segmentation and recognition-free. We first demonstrate that our method is underpinned by a theoretical model that exploits the Bayes' rule. Next, we present an algorithmic implementation that takes into account real world retrieval challenges caused by handwriting fluctuations and style variations. Our algorithm operates as follows: First, a number of connected components of the query are matched against the connected components of the document image using shape features. A similarity threshold is used to select the connected components of the document image that are most similar to the query components. Then, the selected components are used to detect candidate occurrences of the query in the document image by using size-adaptive bounding boxes. Finally, a score is calculated for each candidate occurrence and used for ranking. We conduct a comparative evaluation of our method on a dataset of 200 printed document images, by executing 40 printed and 200 handwritten queries of mathematical expressions. Experimental results demonstrate competitive performances expressed by P-Recall = 100%, A-Recall = 99.95% for printed queries, and P-Recall = 73.5%, A-Recall = 57.92% for handwritten queries, outperforming a state-of-the-art CBDIR algorithm. | en |
dc.language | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.relation.ispartof | Proceedings of the Third IAPR Asian Conference on Pattern Recognition (ACPR 2015) | en |
dc.title | Towards a segmentation and recognition-free approach for content-based document image retrieval of handwritten queries | en |
dc.type | Conference Publication | en |
dc.relation.conference | ACPR 2015: 3rd Asian Conference on Pattern Recognition | en |
dc.identifier.doi | 10.1109/ACPR.2015.7486483 | en |
dc.subject.keywords | Pattern Recognition and Data Mining | en |
dc.subject.keywords | Computer Vision | en |
dc.subject.keywords | Image Processing | en |
local.contributor.firstname | Houssem | en |
local.contributor.firstname | Keisuke | en |
local.contributor.firstname | Paul H | en |
local.subject.for2008 | 080106 Image Processing | en |
local.subject.for2008 | 080109 Pattern Recognition and Data Mining | en |
local.subject.for2008 | 080104 Computer Vision | en |
local.subject.seo2008 | 890404 Publishing and Print Services (incl. Internet Publishing) | en |
local.subject.seo2008 | 970108 Expanding Knowledge in the Information and Computing Sciences | en |
local.subject.seo2008 | 890201 Application Software Packages (excl. Computer Games) | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | wkwan2@une.edu.au | en |
local.output.category | E1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20151118-09137 | en |
local.date.conference | 3rd - 6th November, 2015 | en |
local.conference.place | Kuala Lumpur, Malaysia | en |
local.publisher.place | Los Alamitos, United States of America | en |
local.format.startpage | 146 | en |
local.format.endpage | 150 | en |
local.peerreviewed | Yes | en |
local.contributor.lastname | Chatbri | en |
local.contributor.lastname | Kameyama | en |
local.contributor.lastname | Kwan | en |
dc.identifier.staff | une-id:wkwan2 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:19375 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Towards a segmentation and recognition-free approach for content-based document image retrieval of handwritten queries | en |
local.output.categorydescription | E1 Refereed Scholarly Conference Publication | en |
local.conference.details | ACPR 2015: 3rd Asian Conference on Pattern Recognition, Kuala Lumpur, Malaysia, 3rd - 6th November, 2015 | en |
local.search.author | Chatbri, Houssem | en |
local.search.author | Kameyama, Keisuke | en |
local.search.author | Kwan, Paul H | en |
local.uneassociation | Unknown | en |
local.year.published | 2015 | en |
local.subject.for2020 | 460306 Image processing | en |
local.subject.for2020 | 461199 Machine learning not elsewhere classified | en |
local.subject.for2020 | 460301 Active sensing | en |
local.subject.seo2020 | 220503 Publishing and print services | en |
local.subject.seo2020 | 280115 Expanding knowledge in the information and computing sciences | en |
local.subject.seo2020 | 220401 Application software packages | en |
local.date.start | 2015-11-03 | - |
local.date.end | 2015-11-06 | - |
Appears in Collections: | Conference Publication |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
7
checked on Dec 7, 2024
Page view(s)
1,348
checked on Apr 7, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.