Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/18233
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCai, Jingjingen
dc.contributor.authorLou, Bendongen
dc.contributor.authorZhou, Maolinen
dc.date.accessioned2015-12-08T10:17:00Z-
dc.date.issued2014-
dc.identifier.citationJournal of Dynamics and Differential Equations, 26(4), p. 1007-1028en
dc.identifier.issn1572-9222en
dc.identifier.issn1040-7294en
dc.identifier.urihttps://hdl.handle.net/1959.11/18233-
dc.description.abstractWe study a nonlinear diffusion equation of the form ut = uxx + f (u) (x ε [g(t), h(t)]) with free boundary conditions g'(t) = -ux(t, g(t)) + α and h'(t) = -ux(t, h(t)) - α for some α > 0. Such problems may be used to describe the spreading of a biological or chemical species, with the free boundaries representing the expanding fronts. When α = 0, the problem was recently investigated by Du and Lin (SIAM J Math Anal 42:377-405, 2010) and Du and Lou (J Euro Math Soc arXiv:1301.5373). In this paper we consider the case α > 0. In this case shrinking (i.e. h(t)-g(t) → 0) may happen, which is quite different from the case α = 0. Moreover, we show that, under certain conditions on f, shrinking is equivalent to vanishing (i.e. u → 0), both of them happen as t tends to some finite time. On the other hand, every bounded and positive time-global solution converges to a nonzero stationary solution as t → ∞. As applications, we consider monostable, bistable and combustion types of nonlinearities, and obtain a complete description on the asymptotic behavior of the solutions.en
dc.languageenen
dc.publisherSpringer New York LLCen
dc.relation.ispartofJournal of Dynamics and Differential Equationsen
dc.titleAsymptotic Behavior of Solutions of a Reaction Diffusion Equation with Free Boundary Conditionsen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s10884-014-9404-zen
dcterms.accessRightsGreenen
dc.subject.keywordsPartial Differential Equationsen
local.contributor.firstnameJingjingen
local.contributor.firstnameBendongen
local.contributor.firstnameMaolinen
local.subject.for2008010110 Partial Differential Equationsen
local.subject.seo2008970101 Expanding Knowledge in the Mathematical Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailmzhou6@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20151208-08374en
local.publisher.placeUnited States of Americaen
local.format.startpage1007en
local.format.endpage1028en
local.url.openhttps://arxiv.org/abs/1406.4629en
local.peerreviewedYesen
local.identifier.volume26en
local.identifier.issue4en
local.access.fulltextYesen
local.contributor.lastnameCaien
local.contributor.lastnameLouen
local.contributor.lastnameZhouen
dc.identifier.staffune-id:mzhou6en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:18438en
dc.identifier.academiclevelAcademicen
local.title.maintitleAsymptotic Behavior of Solutions of a Reaction Diffusion Equation with Free Boundary Conditionsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorCai, Jingjingen
local.search.authorLou, Bendongen
local.search.authorZhou, Maolinen
local.uneassociationUnknownen
local.year.published2014en
local.subject.for2020490410 Partial differential equationsen
local.subject.seo2020280118 Expanding knowledge in the mathematical sciencesen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

29
checked on Dec 7, 2024

Page view(s)

944
checked on Sep 10, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.