Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/18233
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cai, Jingjing | en |
dc.contributor.author | Lou, Bendong | en |
dc.contributor.author | Zhou, Maolin | en |
dc.date.accessioned | 2015-12-08T10:17:00Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Journal of Dynamics and Differential Equations, 26(4), p. 1007-1028 | en |
dc.identifier.issn | 1572-9222 | en |
dc.identifier.issn | 1040-7294 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/18233 | - |
dc.description.abstract | We study a nonlinear diffusion equation of the form ut = uxx + f (u) (x ε [g(t), h(t)]) with free boundary conditions g'(t) = -ux(t, g(t)) + α and h'(t) = -ux(t, h(t)) - α for some α > 0. Such problems may be used to describe the spreading of a biological or chemical species, with the free boundaries representing the expanding fronts. When α = 0, the problem was recently investigated by Du and Lin (SIAM J Math Anal 42:377-405, 2010) and Du and Lou (J Euro Math Soc arXiv:1301.5373). In this paper we consider the case α > 0. In this case shrinking (i.e. h(t)-g(t) → 0) may happen, which is quite different from the case α = 0. Moreover, we show that, under certain conditions on f, shrinking is equivalent to vanishing (i.e. u → 0), both of them happen as t tends to some finite time. On the other hand, every bounded and positive time-global solution converges to a nonzero stationary solution as t → ∞. As applications, we consider monostable, bistable and combustion types of nonlinearities, and obtain a complete description on the asymptotic behavior of the solutions. | en |
dc.language | en | en |
dc.publisher | Springer New York LLC | en |
dc.relation.ispartof | Journal of Dynamics and Differential Equations | en |
dc.title | Asymptotic Behavior of Solutions of a Reaction Diffusion Equation with Free Boundary Conditions | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1007/s10884-014-9404-z | en |
dcterms.accessRights | Green | en |
dc.subject.keywords | Partial Differential Equations | en |
local.contributor.firstname | Jingjing | en |
local.contributor.firstname | Bendong | en |
local.contributor.firstname | Maolin | en |
local.subject.for2008 | 010110 Partial Differential Equations | en |
local.subject.seo2008 | 970101 Expanding Knowledge in the Mathematical Sciences | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | mzhou6@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20151208-08374 | en |
local.publisher.place | United States of America | en |
local.format.startpage | 1007 | en |
local.format.endpage | 1028 | en |
local.url.open | https://arxiv.org/abs/1406.4629 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 26 | en |
local.identifier.issue | 4 | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Cai | en |
local.contributor.lastname | Lou | en |
local.contributor.lastname | Zhou | en |
dc.identifier.staff | une-id:mzhou6 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:18438 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Asymptotic Behavior of Solutions of a Reaction Diffusion Equation with Free Boundary Conditions | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Cai, Jingjing | en |
local.search.author | Lou, Bendong | en |
local.search.author | Zhou, Maolin | en |
local.uneassociation | Unknown | en |
local.year.published | 2014 | en |
local.subject.for2020 | 490410 Partial differential equations | en |
local.subject.seo2020 | 280118 Expanding knowledge in the mathematical sciences | en |
Appears in Collections: | Journal Article |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
29
checked on Dec 7, 2024
Page view(s)
944
checked on Sep 10, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.