Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/18103
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMcDonald, Karlieen
dc.contributor.authorRyder, Darrenen
dc.contributor.authorTighe, Matthewen
dc.date.accessioned2015-11-06T10:23:00Z-
dc.date.issued2015-
dc.identifier.citationJournal of Environmental Management, v.154, p. 190-200en
dc.identifier.issn1095-8630en
dc.identifier.issn0301-4797en
dc.identifier.urihttps://hdl.handle.net/1959.11/18103-
dc.description.abstractBayesian Belief Networks (BBNs) are being increasingly used to develop a range of predictive models and risk assessments for ecological systems. Ecological BBNs can be applied to complex catchment and water quality issues, integrating multiple spatial and temporal variables within social, economic and environmental decision making processes. This paper reviews the essential components required for ecologists to design a best-practice predictive BBN in an ecological risk assessment (ERA) framework for aquatic ecosystems, outlining: (1) how to create a BBN for an aquatic ERA?; (2) what are the challenges for aquatic ecologists in adopting the best-practice applications of BBNs to ERAs?; and (3) how can BBNs in ERAs influence the science/management interface into the future? The aims of this paper are achieved using three approaches. The first is to demonstrate the best-practice development of BBNs in aquatic sciences using a simple nutrient model. The second is to discuss the limitations and challenges aquatic ecologists encounter when applying BBNs to ERAs. The third is to provide a framework for integrating best-practice BBNs into ERAs and the management of aquatic ecosystems. A quantitative review of the application and development of BBNs in aquatic science from 2002 to 2014 was conducted to identify areas where continued best-practice development is required. We outline a best-practice framework for the integration of BBNs into ERAs and study of complex aquatic systems.en
dc.languageenen
dc.publisherElsevier BVen
dc.relation.ispartofJournal of Environmental Managementen
dc.titleDeveloping best-practice Bayesian Belief Networks in Ecological Risk Assessments for freshwater and estuarine ecosystems: A quantitative reviewen
dc.typeJournal Articleen
dc.identifier.doi10.1016/j.jenvman.2015.02.031en
dc.subject.keywordsEcosystem Functionen
dc.subject.keywordsEnvironmental Monitoringen
local.contributor.firstnameKarlieen
local.contributor.firstnameDarrenen
local.contributor.firstnameMatthewen
local.subject.for2008050102 Ecosystem Functionen
local.subject.for2008050206 Environmental Monitoringen
local.subject.seo2008961102 Physical and Chemical Conditions of Water in Coastal and Estuarine Environmentsen
local.subject.seo2008960903 Coastal and Estuarine Water Managementen
local.subject.seo2008960503 Ecosystem Assessment and Management of Coastal and Estuarine Environmentsen
local.profile.schoolOffice of Faculty of Science, Ag, Business and Lawen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailkmcdonal@une.edu.auen
local.profile.emaildryder2@une.edu.auen
local.profile.emailmtighe2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20151013-130556en
local.publisher.placeUnited Kingdomen
local.format.startpage190en
local.format.endpage200en
local.identifier.scopusid84923373658en
local.peerreviewedYesen
local.identifier.volume154en
local.title.subtitleA quantitative reviewen
local.contributor.lastnameMcDonalden
local.contributor.lastnameRyderen
local.contributor.lastnameTigheen
dc.identifier.staffune-id:kmcdonalen
dc.identifier.staffune-id:dryder2en
dc.identifier.staffune-id:mtighe2en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:18309en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleDeveloping best-practice Bayesian Belief Networks in Ecological Risk Assessments for freshwater and estuarine ecosystemsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorMcDonald, Karlieen
local.search.authorRyder, Darrenen
local.search.authorTighe, Matthewen
local.uneassociationUnknownen
local.identifier.wosid000352671500023en
local.year.published2015en
local.subject.for2020410203 Ecosystem functionen
local.subject.for2020410599 Pollution and contamination not elsewhere classifieden
local.subject.seo2020180205 Measurement and assessment of estuarine water qualityen
local.subject.seo2020180299 Coastal and estuarine systems and management not elsewhere classifieden
local.subject.seo2020180601 Assessment and management of terrestrial ecosystemsen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

39
checked on Jan 11, 2025

Page view(s)

1,294
checked on Jul 23, 2023

Download(s)

2
checked on Jul 23, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.