Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/15872
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCornwall, Christopher Een
dc.contributor.authorHepburn, Christopher Den
dc.contributor.authorPritchard, Danielen
dc.contributor.authorCurrie, Kim Ien
dc.contributor.authorMcGraw, Christinaen
dc.contributor.authorHunter, Keith Aen
dc.contributor.authorHurd, Catriona Len
dc.date.accessioned2014-10-14T08:43:00Z-
dc.date.issued2012-
dc.identifier.citationJournal of Phycology, 48(1), p. 137-144en
dc.identifier.issn1529-8817en
dc.identifier.issn0022-3646en
dc.identifier.urihttps://hdl.handle.net/1959.11/15872-
dc.description.abstractOcean acidification (OA) is a reduction in oceanic pH due to increased absorption of anthropogenically produced CO₂. This change alters the seawater concentrations of inorganic carbon species that are utilized by macroalgae or photosynthesis and calcification: CO₂ and HCO₃⁻ increase; CO₃²⁻ decreases. Two common methods of experimentally reducing seawater pH differentially alter other aspects of carbonate chemistry: the addition of CO₂ gas mimics changes predicted due to OA, while the addition of HCl results in a comparatively lower [HCO₃⁻]. We measured the short-term photosynthetic responses of five macroalgal species with various carbon-use strategies in one of three seawater pH treatments: pH 7.5 lowered by bubbling CO₂ gas, pH 7.5 lowered by HCl, and ambient pH 7.9. There was no difference in photosynthetic rates between the CO₂, HCl, or pH 7.9 treatments for any of the species examined. However, the ability of macroalgae to raise the pH of the surrounding seawater through carbon uptake was greatest in the pH 7.5 treatments. Modeling of pH change due to carbon assimilation indicated that macroalgal species that could utilize HCO₃⁻ increased their use of CO₂ in the pH 7.5 treatments compared to pH 7.9 treatments. Species only capable of using CO₂ did so exclusively in all treatments. Although CO₂ is not likely to be limiting for photosynthesis for the macroalgal species examined, the diffusive uptake of CO₂ is less energetically expensive than active HCO₃⁻ uptake, and so HCO₃⁻ -using macroalgae may benefit in future seawater with elevated CO₂.en
dc.languageenen
dc.publisherJohn Wiley & Sons, Incen
dc.relation.ispartofJournal of Phycologyen
dc.titleCarbon-use Strategies in Macroalgae: Differential Responses to Lowered pH and Implications for Ocean Acidificationen
dc.typeJournal Articleen
dc.identifier.doi10.1111/j.1529-8817.2011.01085.xen
dc.subject.keywordsMarine and Estuarine Ecology (incl Marine Ichthyology)en
dc.subject.keywordsInstrumental Methods (excl Immunological and Bioassay Methods)en
local.contributor.firstnameChristopher Een
local.contributor.firstnameChristopher Den
local.contributor.firstnameDanielen
local.contributor.firstnameKim Ien
local.contributor.firstnameChristinaen
local.contributor.firstnameKeith Aen
local.contributor.firstnameCatriona Len
local.subject.for2008030105 Instrumental Methods (excl Immunological and Bioassay Methods)en
local.subject.for2008060205 Marine and Estuarine Ecology (incl Marine Ichthyology)en
local.subject.seo2008960301 Climate Change Adaptation Measuresen
local.subject.seo2008960308 Effects of Climate Change and Variability on New Zealand (excl. Social Impacts)en
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcmcgraw@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20141012-204823en
local.publisher.placeUnited States of Americaen
local.format.startpage137en
local.format.endpage144en
local.peerreviewedYesen
local.identifier.volume48en
local.identifier.issue1en
local.title.subtitleDifferential Responses to Lowered pH and Implications for Ocean Acidificationen
local.contributor.lastnameCornwallen
local.contributor.lastnameHepburnen
local.contributor.lastnamePritcharden
local.contributor.lastnameCurrieen
local.contributor.lastnameMcGrawen
local.contributor.lastnameHunteren
local.contributor.lastnameHurden
dc.identifier.staffune-id:cmcgrawen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:16109en
local.identifier.handlehttps://hdl.handle.net/1959.11/15872en
dc.identifier.academiclevelAcademicen
local.title.maintitleCarbon-use Strategies in Macroalgaeen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorCornwall, Christopher Een
local.search.authorHepburn, Christopher Den
local.search.authorPritchard, Danielen
local.search.authorCurrie, Kim Ien
local.search.authorMcGraw, Christinaen
local.search.authorHunter, Keith Aen
local.search.authorHurd, Catriona Len
local.uneassociationUnknownen
local.year.published2012en
local.subject.for2020340105 Instrumental methods (excl. immunological and bioassay methods)en
local.subject.for2020310305 Marine and estuarine ecology (incl. marine ichthyology)en
local.subject.seo2020190101 Climate change adaptation measures (excl. ecosystem)en
local.subject.seo2020190505 Effects of climate change on New Zealand (excl. social impacts)en
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

152
checked on Jul 6, 2024

Page view(s)

1,076
checked on May 12, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.