Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/14470
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCampbell, Hamishen
dc.contributor.authorGao, Lianlien
dc.contributor.authorBidder, Owen Ren
dc.contributor.authorHunter, Janeen
dc.contributor.authorFranklin, Craig Een
dc.date.accessioned2014-03-31T15:29:00Z-
dc.date.issued2013-
dc.identifier.citationThe Journal of Experimental Biology, 216(24), p. 4501-4506en
dc.identifier.issn1477-9145en
dc.identifier.issn0022-0949en
dc.identifier.urihttps://hdl.handle.net/1959.11/14470-
dc.description.abstractDistinguishing specific behavioural modes from data collected by animal-borne tri-axial accelerometers can be a time-consuming and subjective process. Data synthesis can be further inhibited when the tri-axial acceleration data cannot be paired with the corresponding behavioural mode through direct observation. Here, we explored the use of a tame surrogate (domestic dog) to build a behavioural classification module, and then used that module to accurately identify and quantify behavioural modes within acceleration collected from other individuals/species. Tri-axial acceleration data were recorded from a domestic dog whilst it was commanded to walk, run, sit, stand and lie-down. Through video synchronisation, each tri-axial acceleration sample was annotated with its associated behavioural mode; the feature vectors were extracted and used to build the classification module through the application of support vector machines (SVMs). This behavioural classification module was then used to identify and quantify the same behavioural modes in acceleration collected from a range of other species (alligator, badger, cheetah, dingo, echidna, kangaroo and wombat). Evaluation of the module performance, using a binary classification system, showed there was a high capacity (>90%) for behaviour recognition between individuals of the same species. Furthermore, a positive correlation existed between SVM capacity and the similarity of the individual's spinal length-to-height above the ground ratio (SL:SH) to that of the surrogate. The study describes how to build a behavioural classification module and highlights the value of using a surrogate for studying cryptic, rare or endangered species.en
dc.languageenen
dc.publisherThe Company of Biologists Ltden
dc.relation.ispartofThe Journal of Experimental Biologyen
dc.titleCreating a behavioural classification module for acceleration data: using a captive surrogate for difficult to observe speciesen
dc.typeJournal Articleen
dc.identifier.doi10.1242/jeb.089805en
dcterms.accessRightsGolden
dc.subject.keywordsAnimal Behaviouren
local.contributor.firstnameHamishen
local.contributor.firstnameLianlien
local.contributor.firstnameOwen Ren
local.contributor.firstnameJaneen
local.contributor.firstnameCraig Een
local.subject.for2008060801 Animal Behaviouren
local.subject.seo2008960899 Flora, Fauna and Biodiversity of Environments not elsewhere classifieden
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolEcosystems Managementen
local.profile.schoolEcosystems Managementen
local.profile.schoolEcosystems Managementen
local.profile.schoolEcosystems Managementen
local.profile.emailhcampbe8@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20140326-164558en
local.publisher.placeUnited Kingdomen
local.format.startpage4501en
local.format.endpage4506en
local.peerreviewedYesen
local.identifier.volume216en
local.identifier.issue24en
local.title.subtitleusing a captive surrogate for difficult to observe speciesen
local.access.fulltextYesen
local.contributor.lastnameCampbellen
local.contributor.lastnameGaoen
local.contributor.lastnameBidderen
local.contributor.lastnameHunteren
local.contributor.lastnameFranklinen
dc.identifier.staffune-id:hcampbe8en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:14685en
local.identifier.handlehttps://hdl.handle.net/1959.11/14470en
dc.identifier.academiclevelAcademicen
local.title.maintitleCreating a behavioural classification module for acceleration dataen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorCampbell, Hamishen
local.search.authorGao, Lianlien
local.search.authorBidder, Owen Ren
local.search.authorHunter, Janeen
local.search.authorFranklin, Craig Een
local.uneassociationUnknownen
local.year.published2013en
local.subject.for2020310901 Animal behaviouren
local.subject.seo2020189999 Other environmental management not elsewhere classifieden
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

61
checked on Jan 11, 2025

Page view(s)

1,120
checked on Aug 20, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.