Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/14470
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Campbell, Hamish | en |
dc.contributor.author | Gao, Lianli | en |
dc.contributor.author | Bidder, Owen R | en |
dc.contributor.author | Hunter, Jane | en |
dc.contributor.author | Franklin, Craig E | en |
dc.date.accessioned | 2014-03-31T15:29:00Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | The Journal of Experimental Biology, 216(24), p. 4501-4506 | en |
dc.identifier.issn | 1477-9145 | en |
dc.identifier.issn | 0022-0949 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/14470 | - |
dc.description.abstract | Distinguishing specific behavioural modes from data collected by animal-borne tri-axial accelerometers can be a time-consuming and subjective process. Data synthesis can be further inhibited when the tri-axial acceleration data cannot be paired with the corresponding behavioural mode through direct observation. Here, we explored the use of a tame surrogate (domestic dog) to build a behavioural classification module, and then used that module to accurately identify and quantify behavioural modes within acceleration collected from other individuals/species. Tri-axial acceleration data were recorded from a domestic dog whilst it was commanded to walk, run, sit, stand and lie-down. Through video synchronisation, each tri-axial acceleration sample was annotated with its associated behavioural mode; the feature vectors were extracted and used to build the classification module through the application of support vector machines (SVMs). This behavioural classification module was then used to identify and quantify the same behavioural modes in acceleration collected from a range of other species (alligator, badger, cheetah, dingo, echidna, kangaroo and wombat). Evaluation of the module performance, using a binary classification system, showed there was a high capacity (>90%) for behaviour recognition between individuals of the same species. Furthermore, a positive correlation existed between SVM capacity and the similarity of the individual's spinal length-to-height above the ground ratio (SL:SH) to that of the surrogate. The study describes how to build a behavioural classification module and highlights the value of using a surrogate for studying cryptic, rare or endangered species. | en |
dc.language | en | en |
dc.publisher | The Company of Biologists Ltd | en |
dc.relation.ispartof | The Journal of Experimental Biology | en |
dc.title | Creating a behavioural classification module for acceleration data: using a captive surrogate for difficult to observe species | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1242/jeb.089805 | en |
dcterms.accessRights | Gold | en |
dc.subject.keywords | Animal Behaviour | en |
local.contributor.firstname | Hamish | en |
local.contributor.firstname | Lianli | en |
local.contributor.firstname | Owen R | en |
local.contributor.firstname | Jane | en |
local.contributor.firstname | Craig E | en |
local.subject.for2008 | 060801 Animal Behaviour | en |
local.subject.seo2008 | 960899 Flora, Fauna and Biodiversity of Environments not elsewhere classified | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | Ecosystems Management | en |
local.profile.school | Ecosystems Management | en |
local.profile.school | Ecosystems Management | en |
local.profile.school | Ecosystems Management | en |
local.profile.email | hcampbe8@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20140326-164558 | en |
local.publisher.place | United Kingdom | en |
local.format.startpage | 4501 | en |
local.format.endpage | 4506 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 216 | en |
local.identifier.issue | 24 | en |
local.title.subtitle | using a captive surrogate for difficult to observe species | en |
local.access.fulltext | Yes | en |
local.contributor.lastname | Campbell | en |
local.contributor.lastname | Gao | en |
local.contributor.lastname | Bidder | en |
local.contributor.lastname | Hunter | en |
local.contributor.lastname | Franklin | en |
dc.identifier.staff | une-id:hcampbe8 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:14685 | en |
local.identifier.handle | https://hdl.handle.net/1959.11/14470 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Creating a behavioural classification module for acceleration data | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Campbell, Hamish | en |
local.search.author | Gao, Lianli | en |
local.search.author | Bidder, Owen R | en |
local.search.author | Hunter, Jane | en |
local.search.author | Franklin, Craig E | en |
local.uneassociation | Unknown | en |
local.year.published | 2013 | en |
local.subject.for2020 | 310901 Animal behaviour | en |
local.subject.seo2020 | 189999 Other environmental management not elsewhere classified | en |
Appears in Collections: | Journal Article |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
61
checked on Jan 11, 2025
Page view(s)
1,120
checked on Aug 20, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.