Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/12673
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPennington, Bruce Fen
dc.contributor.authorSanterre-Lemmon, Lauraen
dc.contributor.authorOlson, Richard Ken
dc.contributor.authorRosenberg, Jenniferen
dc.contributor.authorMacDonald, Beatrizen
dc.contributor.authorBoada, Richarden
dc.contributor.authorFriend, Angelaen
dc.contributor.authorLeopold, Daniel Ren
dc.contributor.authorSamuelsson, Stefanen
dc.contributor.authorByrne, Brian Jen
dc.contributor.authorWillcutt, Erik Gen
dc.date.accessioned2013-06-06T11:04:00Z-
dc.date.issued2012-
dc.identifier.citationJournal of Abnormal Psychology, 121(1), p. 212-224en
dc.identifier.issn1939-1846en
dc.identifier.issn0021-843Xen
dc.identifier.urihttps://hdl.handle.net/1959.11/12673-
dc.description.abstractThe overall goals of this study were to test single versus multiple cognitive deficit models of dyslexia (reading disability) at the level of individual cases and to determine the clinical utility of these models for prediction and diagnosis of dyslexia. To accomplish these goals, we tested five cognitive models of dyslexia - two single-deficit models, two multiple-deficit models, and one hybrid model - in two large population-based samples, one cross-sectional (Colorado Learning Disability Research Center) and one longitudinal (International longitudinal Twin Study). The cognitive deficits included in these cognitive models were in phonological awareness, language skill, and processing speed and/or naming speed. To determine whether an individual case fit one of these models, we used two methods: 1) the presence or absence of the predicted cognitive deficits, and 2) whether the individual's level of reading skill best fit the regression equation with the relevant cognitive predictors (i.e., whether their reading skill was proportional to those cognitive predictors.) We found that roughly equal proportions of cases met both tests of model fit for the multiple deficit models (30-36%) and single deficit models (24-28%); hence, the hybrid model provided the best overall fit to the data. The remaining roughly 40% of cases in each sample lacked the deficit or deficits that corresponded with their best-fitting regression model. We discuss the clinical implications of these results for both diagnosis of school-age children and preschool prediction of children at risk for dyslexia.en
dc.languageenen
dc.publisherAmerican Psychological Associationen
dc.relation.ispartofJournal of Abnormal Psychologyen
dc.titleIndividual Prediction of Dyslexia by Single Versus Multiple Deficit Modelsen
dc.typeJournal Articleen
dc.identifier.doi10.1037/a0025823en
dcterms.accessRightsGreenen
dc.subject.keywordsPsychologyen
dc.subject.keywordsBiological Psychology (Neuropsychology, Psychopharmacology, Physiological Psychology)en
dc.subject.keywordsPersonality, Abilities and Assessmenten
local.contributor.firstnameBruce Fen
local.contributor.firstnameLauraen
local.contributor.firstnameRichard Ken
local.contributor.firstnameJenniferen
local.contributor.firstnameBeatrizen
local.contributor.firstnameRicharden
local.contributor.firstnameAngelaen
local.contributor.firstnameDaniel Ren
local.contributor.firstnameStefanen
local.contributor.firstnameBrian Jen
local.contributor.firstnameErik Gen
local.subject.for2008170109 Personality, Abilities and Assessmenten
local.subject.for2008170199 Psychology not elsewhere classifieden
local.subject.for2008170101 Biological Psychology (Neuropsychology, Psychopharmacology, Physiological Psychology)en
local.subject.seo2008930102 Learner and Learning Processesen
local.subject.seo2008930199 Learner and Learning not elsewhere classifieden
local.subject.seo2008930103 Learner Developmenten
local.profile.schoolPsychologyen
local.profile.schoolPsychologyen
local.profile.schoolPsychologyen
local.profile.schoolPsychologyen
local.profile.schoolPsychologyen
local.profile.schoolPsychologyen
local.profile.schoolPsychologyen
local.profile.schoolPsychologyen
local.profile.schoolPsychologyen
local.profile.schoolAdministrationen
local.profile.schoolPsychologyen
local.profile.emailbbyrne@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20130605-190758en
local.publisher.placeUnited States of Americaen
local.format.startpage212en
local.format.endpage224en
local.url.openhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270218en
local.peerreviewedYesen
local.identifier.volume121en
local.identifier.issue1en
local.access.fulltextYesen
local.contributor.lastnamePenningtonen
local.contributor.lastnameSanterre-Lemmonen
local.contributor.lastnameOlsonen
local.contributor.lastnameRosenbergen
local.contributor.lastnameMacDonalden
local.contributor.lastnameBoadaen
local.contributor.lastnameFrienden
local.contributor.lastnameLeopolden
local.contributor.lastnameSamuelssonen
local.contributor.lastnameByrneen
local.contributor.lastnameWillcutten
dc.identifier.staffune-id:bbyrneen
local.profile.orcid0000-0002-5532-9407en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:12881en
dc.identifier.academiclevelAcademicen
local.title.maintitleIndividual Prediction of Dyslexia by Single Versus Multiple Deficit Modelsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorPennington, Bruce Fen
local.search.authorSanterre-Lemmon, Lauraen
local.search.authorOlson, Richard Ken
local.search.authorRosenberg, Jenniferen
local.search.authorMacDonald, Beatrizen
local.search.authorBoada, Richarden
local.search.authorFriend, Angelaen
local.search.authorLeopold, Daniel Ren
local.search.authorSamuelsson, Stefanen
local.search.authorByrne, Brian Jen
local.search.authorWillcutt, Erik Gen
local.uneassociationUnknownen
local.identifier.wosid000300198500020en
local.year.published2012en
local.subject.for2020520108 Testing, assessment and psychometricsen
local.subject.for2020520199 Applied and developmental psychology not elsewhere classifieden
local.subject.for2020520202 Behavioural neuroscienceen
local.subject.seo2020160101 Early childhood educationen
local.subject.seo2020160199 Learner and learning not elsewhere classifieden
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

205
checked on Nov 30, 2024

Page view(s)

1,304
checked on Dec 8, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.