Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/12456
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tighe, Matthew | en |
dc.contributor.author | Pollino, Carmel A | en |
dc.contributor.author | Wilson, Susan C | en |
dc.date.accessioned | 2013-04-17T14:14:00Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Journal of Environmental Management, v.123, p. 68-76 | en |
dc.identifier.issn | 1095-8630 | en |
dc.identifier.issn | 0301-4797 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/12456 | - |
dc.description.abstract | A tiered approach to contamination exposure assessment is currently adopted in many countries. Increasing the site-specific information in exposure assessments is generally recommended when guideline values for contaminants in soil are exceeded. This work details a Bayesian Network (BN) approach to developing a site-specific environmental exposure assessment that focuses on the simple mapping and assessment of assumptions and the effect of new data on assessment outcomes. The BN approach was applied to a floodplain system in New South Wales, Australia, where site-specific information about elevated antimony (Sb) concentrations and distribution in soils was available. Guidelines for exposure assessment in Australia are used as a template for this site, although the approach is generic. The BN-based assessment used an iterative approach starting with limited soil Sb data (41 samples ranging from 0 to 18 mg kg⁻¹ Sb) and extending the model with more detailed Sb data (145 samples ranging from 0 to 40 mg kg⁻¹ Sb). The analyses identified dominant exposure pathways and assessed the sensitivity of these pathways to changes in assumptions and the level of site-specific information available. In particular, there was a 10.8% probability of exceeding the tolerable daily intake of Sb in the case study when the limited soil Sb data was used, which increased to 26.2% with the more detailed sampling regime. There was also a 47% decrease in the probability of overexposure to Sb when the dermal bioavailability of arsenic (a similar metalloid) was used as a surrogate measure instead of a default bioavailability of 100%. We conclude that the BN approach to soil exposure assessment has merit both in the context of Australian and international soil exposure assessments. | en |
dc.language | en | en |
dc.publisher | Elsevier BV | en |
dc.relation.ispartof | Journal of Environmental Management | en |
dc.title | Bayesian Networks as a screening tool for exposure assessment | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1016/j.jenvman.2013.03.018 | en |
dc.subject.keywords | Environmental Impact Assessment | en |
dc.subject.keywords | Soil Chemistry (excl Carbon Sequestration Science) | en |
dc.subject.keywords | Environmental Monitoring | en |
local.contributor.firstname | Matthew | en |
local.contributor.firstname | Carmel A | en |
local.contributor.firstname | Susan C | en |
local.subject.for2008 | 050204 Environmental Impact Assessment | en |
local.subject.for2008 | 050304 Soil Chemistry (excl Carbon Sequestration Science) | en |
local.subject.for2008 | 050206 Environmental Monitoring | en |
local.subject.seo2008 | 960504 Ecosystem Assessment and Management of Farmland, Arable Cropland and Permanent Cropland Environments | en |
local.subject.seo2008 | 961401 Coastal and Estuarine Soils | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | Agronomy and Soil Science | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.email | mtighe2@une.edu.au | en |
local.profile.email | swilso24@une.edu.au | en |
local.output.category | C1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20130417-112927 | en |
local.publisher.place | United Kingdom | en |
local.format.startpage | 68 | en |
local.format.endpage | 76 | en |
local.identifier.scopusid | 84876314482 | en |
local.peerreviewed | Yes | en |
local.identifier.volume | 123 | en |
local.contributor.lastname | Tighe | en |
local.contributor.lastname | Pollino | en |
local.contributor.lastname | Wilson | en |
dc.identifier.staff | une-id:mtighe2 | en |
dc.identifier.staff | une-id:swilso24 | en |
local.profile.orcid | 0000-0002-3409-0847 | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:12663 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Bayesian Networks as a screening tool for exposure assessment | en |
local.output.categorydescription | C1 Refereed Article in a Scholarly Journal | en |
local.search.author | Tighe, Matthew | en |
local.search.author | Pollino, Carmel A | en |
local.search.author | Wilson, Susan C | en |
local.uneassociation | Unknown | en |
local.identifier.wosid | 000319545400009 | en |
local.year.published | 2013 | en |
local.subject.for2020 | 410402 Environmental assessment and monitoring | en |
local.subject.for2020 | 300204 Agricultural management of nutrients | en |
local.subject.for2020 | 410599 Pollution and contamination not elsewhere classified | en |
local.subject.seo2020 | 180601 Assessment and management of terrestrial ecosystems | en |
local.subject.seo2020 | 180202 Coastal erosion | en |
Appears in Collections: | Journal Article |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
25
checked on Jul 20, 2024
Page view(s)
1,380
checked on Jul 7, 2024
Download(s)
2
checked on Jul 7, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.