Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/11420
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDetterer, Dionen
dc.contributor.authorKwan, Paul Hen
dc.contributor.authorGondro, Cedricen
dc.date.accessioned2012-10-12T15:40:00Z-
dc.date.issued2012-
dc.identifier.citationFrontiers of Computer Science, 6(5), p. 621-629en
dc.identifier.issn2095-2236en
dc.identifier.issn2095-2228en
dc.identifier.urihttps://hdl.handle.net/1959.11/11420-
dc.description.abstractTraditional Chinese medicine (TCM) relies on the combined effects of herbs within prescribed formulae. However, given the combinatorial explosion due to the vast number of herbs available for treatment, the study of these combined effects can become computationally intractable. Thus feature selection has become increasingly crucial as a pre-processing step prior to the study of combined effects in TCM informatics. In accord with this goal, a new feature selection algorithm known as a co-evolving memetic wrapper (COW) is proposed in this paper. COW takes advantage of recent research in genetic algorithms (GAs) and memetic algorithms (MAs) by evolving appropriate feature subsets for a given domain. Our empirical experiments have demonstrated that COW is capable of selecting subsets of herbs from a TCM insomnia dataset that shows signs of combined effects on the prediction of patient outcomes measured in terms of classification accuracy. We compare the proposed algorithm with results from statistical analysis including main effects and up to three way interaction terms and show that COW is capable of correctly identifying the herbs and herb by herb effects that are significantly associated to patient outcome prediction.en
dc.languageenen
dc.publisherSpringeren
dc.relation.ispartofFrontiers of Computer Scienceen
dc.titleA co-evolving memetic wrapper for prediction of patient outcomes in TCM informaticsen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s11704-012-2959-0en
dc.subject.keywordsPattern Recognition and Data Miningen
dc.subject.keywordsNeural, Evolutionary and Fuzzy Computationen
dc.subject.keywordsTraditional Chinese Medicine and Treatmentsen
local.contributor.firstnameDionen
local.contributor.firstnamePaul Hen
local.contributor.firstnameCedricen
local.subject.for2008110404 Traditional Chinese Medicine and Treatmentsen
local.subject.for2008080108 Neural, Evolutionary and Fuzzy Computationen
local.subject.for2008080109 Pattern Recognition and Data Miningen
local.subject.seo2008890201 Application Software Packages (excl. Computer Games)en
local.subject.seo2008970111 Expanding Knowledge in the Medical and Health Sciencesen
local.subject.seo2008970108 Expanding Knowledge in the Information and Computing Sciencesen
local.profile.schoolSchool of Science and Technologyen
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.emailddetter2@une.edu.auen
local.profile.emailwkwan2@une.edu.auen
local.profile.emailcgondro2@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20120528-222127en
local.publisher.placeUnited Kingdomen
local.format.startpage621en
local.format.endpage629en
local.identifier.scopusid84867437129en
local.peerreviewedYesen
local.identifier.volume6en
local.identifier.issue5en
local.contributor.lastnameDettereren
local.contributor.lastnameKwanen
local.contributor.lastnameGondroen
dc.identifier.staffune-id:ddetter2en
dc.identifier.staffune-id:wkwan2en
dc.identifier.staffune-id:cgondro2en
local.profile.orcid0000-0003-0666-656Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:11619en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA co-evolving memetic wrapper for prediction of patient outcomes in TCM informaticsen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorDetterer, Dionen
local.search.authorKwan, Paul Hen
local.search.authorGondro, Cedricen
local.uneassociationUnknownen
local.identifier.wosid000309721200013en
local.year.published2012en
local.subject.for2020420803 Traditional Chinese medicine and treatmentsen
local.subject.for2020460203 Evolutionary computationen
local.subject.for2020461199 Machine learning not elsewhere classifieden
local.subject.seo2020220401 Application software packagesen
local.subject.seo2020280114 Expanding knowledge in Indigenous studiesen
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

Page view(s)

1,210
checked on Apr 7, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.