Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/10096
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmed, Faisalen
dc.contributor.authorHossain Bari, ASMen
dc.contributor.authorShihavuddin, ASMen
dc.contributor.authorAl-Mamun, Hawlader Aen
dc.contributor.authorKwan, Paul Hen
dc.date.accessioned2012-05-07T16:10:00Z-
dc.date.issued2011-
dc.identifier.citationProceedings of the 12th IEEE International Symposium on Computational Intelligence and Informatics (CINTI), p. 329-334en
dc.identifier.isbn9781457700453en
dc.identifier.isbn9781457700446en
dc.identifier.urihttps://hdl.handle.net/1959.11/10096-
dc.description.abstractConcerns regarding the environmental and economic impacts of excessive herbicide applications in agriculture have promoted interests in seeking alternative weed control strategies. In this context, an automated machine vision system that has the ability to differentiate between broadleaf and grass weeds in digital images to optimize the selection and dosage of herbicides can enhance the profitability and lessen environmental degradation. This paper presents an efficient and effective texture-based weed classification method using local binary pattern (LBP). The objective was to evaluate the feasibility of using micro-level texture patterns to classify weed images into broadleaf and grass categories for real-time selective herbicide applications. Two well-known machine learning methods, template matching and support vector machine, are used for classification. Experiments on 200 sample field images with 100 samples from each category show that, the proposed method is capable of classifying weed images with high accuracy and computational efficiency.en
dc.languageenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.ispartofProceedings of the 12th IEEE International Symposium on Computational Intelligence and Informatics (CINTI)en
dc.titleA Study on Local Binary Pattern for Automated Weed Classification Using Template Matching and Support Vector Machineen
dc.typeConference Publicationen
dc.relation.conferenceCINTI 2011: 12th IEEE International Symposium on Computational Intelligence and Informaticsen
dc.identifier.doi10.1109/CINTI.2011.6108524en
dc.subject.keywordsImage Processingen
dc.subject.keywordsPattern Recognition and Data Miningen
dc.subject.keywordsComputer Visionen
local.contributor.firstnameFaisalen
local.contributor.firstnameASMen
local.contributor.firstnameASMen
local.contributor.firstnameHawlader Aen
local.contributor.firstnamePaul Hen
local.subject.for2008080106 Image Processingen
local.subject.for2008080109 Pattern Recognition and Data Miningen
local.subject.for2008080104 Computer Visionen
local.subject.seo2008890201 Application Software Packages (excl. Computer Games)en
local.subject.seo2008899899 Environmentally Sustainable Information and Communication Services not elsewhere classifieden
local.subject.seo2008960499 Control of Pests, Diseases and Exotic Species not elsewhere classifieden
local.profile.schoolSandT Postgradsen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailfahmed@iut-dhaka.eduen
local.profile.emailhalmamun@une.edu.auen
local.profile.emailwkwan2@une.edu.auen
local.output.categoryE1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20111202-143338en
local.date.conference21st - 22nd November, 2011en
local.conference.placeBudapest, Hungaryen
local.publisher.placeLos Alamitos, United States of Americaen
local.format.startpage329en
local.format.endpage334en
local.peerreviewedYesen
local.contributor.lastnameAhmeden
local.contributor.lastnameHossain Barien
local.contributor.lastnameShihavuddinen
local.contributor.lastnameAl-Mamunen
local.contributor.lastnameKwanen
dc.identifier.staffune-id:halmamunen
dc.identifier.staffune-id:wkwan2en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:10287en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleA Study on Local Binary Pattern for Automated Weed Classification Using Template Matching and Support Vector Machineen
local.output.categorydescriptionE1 Refereed Scholarly Conference Publicationen
local.conference.detailsCINTI 2011: 12th IEEE International Symposium on Computational Intelligence and Informatics, Budapest, Hungary, 21st - 22nd November, 2011en
local.search.authorAhmed, Faisalen
local.search.authorHossain Bari, ASMen
local.search.authorShihavuddin, ASMen
local.search.authorAl-Mamun, Hawlader Aen
local.search.authorKwan, Paul Hen
local.uneassociationUnknownen
local.year.published2011en
local.date.start2011-11-21-
local.date.end2011-11-22-
Appears in Collections:Conference Publication
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

23
checked on Jan 4, 2025

Page view(s)

960
checked on Mar 9, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.