Browsing by Browse by FOR 2008 "020299 Atomic, Molecular, Nuclear, Particle and Plasma Physics not elsewhere classified"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
- Some of the metrics are blocked by yourconsent settings
Journal ArticlePublication Investigation of radiological properties and water equivalency of PRESAGE® dosimeters(American Association of Physicists in Medicine, 2011) ;Gorjiara, Tina ;Hill, Robin ;Kuncic, Zdenka ;Adamovics, John; ;Kim, Jung-HaBaldock, ClivePurpose: PRESAGE® is a dosimeter made of polyurethane, which is suitable for 3D dosimetry in modern radiation treatment techniques. Since an ideal dosimeter is radiologically water equivalent, the authors investigated water equivalency and the radiological properties of three different PRESAGE® formulations that differ primarily in their elemental compositions. Two of the formulations are new and have lower halogen content than the original formulation. Methods: The radiological water equivalence was assessed by comparing the densities, interaction probabilities, and radiation dosimetry properties of the three different PRESAGE® formulations to the corresponding values for water. The relative depth doses were calculated using Monte Carlo methods for 50, 100, 200, and 350 kVp and 6 MV x-ray beams. Results: The mass densities of the three PRESAGE® formulations varied from 5.3% higher than that of water to as much as 10% higher than that of water for the original formulation. The probability of photoelectric absorption in the three different PRESAGE® formulations varied from 2.2 times greater than that of water for the new formulations to 3.5 times greater than that of water for the original formulation. The mass attenuation coefficient for the three formulations is 12%–50% higher than the value for water. These differences occur over an energy range (10-100 keV) in which the photoelectric effect is the dominant interaction. The collision mass stopping powers of the relatively lower halogen-containing PRESAGE® formulations also exhibit marginally better water equivalency than the original higher halogen-containing PRESAGE® formulation. Furthermore, the depth dose curves for the lower halogen-containing PRESAGE® formulations are slightly closer to that of water for a 6 MV beam. In the kilovoltage energy range, the depth dose curves for the lower halogen-containing PRESAGE® formulations are in better agreement with water than the original PRESAGE® formulation. Conclusions: Based on the results of this study, the new PRESAGE® formulations with lower halogen content are more radiologically water equivalent overall than the original formulation. This indicates that the new PRESAGE® formulations are better suited to clinical applications and are more accurate dosimeters and phantoms than the original PRESAGE® formulation. While correction factors are still needed to convert the dose measured by the dosimeter to an absorbed dose in water in the kilovoltage energy range, these correction factors are considerably smaller for the new PRESAGE® formulations compared to the original PRESAGE® and the existing polymer gel dosimeters.1009 1 - Some of the metrics are blocked by yourconsent settings
Journal ArticlePublication Radiological characterization and water equivalency of genipin gel for x-ray and electron beam dosimetry(Institute of Physics Publishing Ltd, 2011) ;Gorjiara, Tina ;Hill, Robin ;Kuncic, Zdenka; ;Davies, Justin BryanBaldock, CliveThe genipin radiochromic gel offers enormous potential as a three-dimensional dosimeter in advanced radiotherapy techniques. We have used several methods (including Monte Carlo simulation), to investigate the water equivalency of genipin gel by characterizing its radiological properties, including mass and electron densities, photon interaction cross sections, mass energy absorption coefficient, effective atomic number, collisional, radiative and total mass stopping powers and electron mass scattering power. Depth doses were also calculated for clinical kilovoltage and megavoltage x-ray beams as well as megavoltage electron beams. The mass density, electron density and effective atomic number of genipin were found to differ from water by less than 2%. For energies below 150 keV, photoelectric absorption cross sections are more than 3% higher than water due to the strong dependence on atomic number. Compton scattering and pair production interaction cross sections for genipin gel differ from water by less than 1%. The mass energy absorption coefficient is approximately 3%higher than water for energies<60 keV due to the dominance of photoelectric absorption in this energy range. The electron mass stopping power and mass scattering power differ from water by approximately 0.3%. X-ray depth dose curves for genipin gel agree to within 1% with those for water. Our results demonstrate that genipin gel can be considered water equivalent for kilovoltage and megavoltage x-ray beam dosimetry. For megavoltage electron beam dosimetry, however, our results suggest that a correction factor may be needed to convert measured dose in genipin gel to that of water, since differences in some radiological properties of up to 3% compared to water are observed. Our results indicate that genipin gel exhibits greater water equivalency than polymer gels and PRESAGE formulations.1007