Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/9751
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbraham, Joshuaen
dc.contributor.authorKwan, Paul Hen
dc.contributor.authorGao, Junbinen
local.source.editorEditor(s): Jucheng Yang and Loris Nannien
dc.date.accessioned2012-03-19T17:01:00Z-
dc.date.issued2011-
dc.identifier.citationState of the Art in Biometrics, p. 25-56en
dc.identifier.isbn9789533074894en
dc.identifier.urihttps://hdl.handle.net/1959.11/9751-
dc.description.abstractMinutiae-based methods have been used in many commercial fingerprint matching systems. Based primarily on a point pattern matching model, these methods rely heavily on the accuracy of minutiae extraction and the detection of landmarks like core and delta for pre-alignment. Spurious and missing minutiae can both introduce errors in minutiae correspondence. Equally problematic is the inability to detect landmarks to guide pre-alignment. Taken together, these problems lead to sub-optimal matching accuracy. Fortunately, the contextual information provided by ridge flow and orientation in the neighborhood of detected minutiae can help eliminate spurious minutiae while compensating for the absence of genuinely missing minutiae both before and during matching. In addition, coupled with a core detection algorithm that can robustly handle missing or partially available landmarks for pre-alignment, significant improvement in matching accuracy can be expected. In this chapter, we will firstly review fingerprint feature extraction, minutiae representation, and registration, which are important components of fingerprint matching algorithms. Following this, we will detail a relevant fingerprint matching algorithm based on the Shape Context descriptor found in Kwan et al. (2006). Next, we will introduce a novel hybrid shape and orientation descriptor that is designed to address the above problems. The hybrid descriptor can effectively filter out spurious or unnatural minutiae pairings while simultaneously using the additional ridge orientation cues in improving match score calculation. In addition, the proposed method can handle situations where either the cores are not well defined for detection or the fingerprints have only partial overlapping. Lastly, experiments conducted on two publicly available fingerprint databases confirm that the proposed hybrid method outperforms other methods included in our performance comparison.en
dc.languageenen
dc.publisherInTechen
dc.relation.ispartofState of the Art in Biometricsen
dc.relation.isversionof1en
dc.titleFingerprint Matching using A Hybrid Shape and Orientation Descriptoren
dc.typeBook Chapteren
dc.identifier.doi10.5772/19105en
dcterms.accessRightsGolden
dc.subject.keywordsComputer Visionen
dc.subject.keywordsImage Processingen
dc.subject.keywordsPattern Recognition and Data Miningen
local.contributor.firstnameJoshuaen
local.contributor.firstnamePaul Hen
local.contributor.firstnameJunbinen
local.subject.for2008080109 Pattern Recognition and Data Miningen
local.subject.for2008080106 Image Processingen
local.subject.for2008080104 Computer Visionen
local.subject.seo2008890201 Application Software Packages (excl. Computer Games)en
local.subject.seo2008810107 National Securityen
local.subject.seo2008940402 Crime Preventionen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcitadel777@gmail.comen
local.profile.emailwkwan2@une.edu.auen
local.profile.emailjbgao@csu.edu.auen
local.output.categoryB1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20111129-10436en
local.publisher.placeRijeka, Croatiaen
local.identifier.totalchapters15en
local.format.startpage25en
local.format.endpage56en
local.peerreviewedYesen
local.access.fulltextYesen
local.contributor.lastnameAbrahamen
local.contributor.lastnameKwanen
local.contributor.lastnameGaoen
dc.identifier.staffune-id:wkwan2en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:9942en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleFingerprint Matching using A Hybrid Shape and Orientation Descriptoren
local.output.categorydescriptionB1 Chapter in a Scholarly Booken
local.search.authorAbraham, Joshuaen
local.search.authorKwan, Paul Hen
local.search.authorGao, Junbinen
local.uneassociationUnknownen
local.year.published2011en
Appears in Collections:Book Chapter
Files in This Item:
3 files
File Description SizeFormat 
Show simple item record

Page view(s)

1,030
checked on Mar 7, 2023

Download(s)

2
checked on Mar 7, 2023
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.