Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/7612
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJiang, Xinweien
dc.contributor.authorGao, Junbinen
dc.contributor.authorWang, Tianjiangen
dc.contributor.authorKwan, Paul Hen
local.source.editorEditor(s): Mohammed J Zaki, Jeffrey Xu Yu, B Ravindran, Vikram Pudien
dc.date.accessioned2011-06-02T15:39:00Z-
dc.date.issued2010-
dc.identifier.citationAdvances in Knowledge Discovery and Data Mining: Proceedings of the 14th Pacific-Asia Conference, PAKDD 2010, v.II, p. 113-124en
dc.identifier.isbn3642136710en
dc.identifier.isbn9783642136719en
dc.identifier.urihttps://hdl.handle.net/1959.11/7612-
dc.description.abstractThe problems of variable selection and inference of statistical dependence have been addressed by modeling in the gradients learning framework based on the representer theorem. In this paper, we propose a new gradients learning algorithm in the Bayesian framework, called Gaussian Processes Gradient Learning (GPGL) model, which can achieve higher accuracy while returning the credible intervals of the estimated gradients that existing methods cannot provide. The simulation examples are used to verify the proposed algorithm, and its advantages can be seen from the experimental results.en
dc.languageenen
dc.publisherSpringeren
dc.relation.ispartofAdvances in Knowledge Discovery and Data Mining: Proceedings of the 14th Pacific-Asia Conference, PAKDD 2010en
dc.relation.ispartofseriesLecture Notes in Artificial Intelligenceen
dc.relation.isversionof1en
dc.titleLearning Gradients with Gaussian Processesen
dc.typeBook Chapteren
dc.identifier.doi10.1007/978-3-642-13672-6_12en
dc.subject.keywordsAnalysis of Algorithms and Complexityen
dc.subject.keywordsNumerical Computationen
dc.subject.keywordsPattern Recognition and Data Miningen
local.contributor.firstnameXinweien
local.contributor.firstnameJunbinen
local.contributor.firstnameTianjiangen
local.contributor.firstnamePaul Hen
local.subject.for2008080201 Analysis of Algorithms and Complexityen
local.subject.for2008080109 Pattern Recognition and Data Miningen
local.subject.for2008080205 Numerical Computationen
local.subject.seo2008890299 Computer Software and Services not elsewhere classifieden
local.profile.schoolSchool of Science and Technologyen
local.profile.emailjgao@une.edu.auen
local.profile.emailwkwan2@une.edu.auen
local.output.categoryB1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20110324-17261en
local.publisher.placeBerlin, Germanyen
local.identifier.totalchapters48en
local.format.startpage113en
local.format.endpage124en
local.series.issn0302-9743en
local.series.number6119en
local.identifier.volumeIIen
local.contributor.lastnameJiangen
local.contributor.lastnameGaoen
local.contributor.lastnameWangen
local.contributor.lastnameKwanen
dc.identifier.staffune-id:jgaoen
dc.identifier.staffune-id:wkwan2en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:7781en
dc.identifier.academiclevelAcademicen
local.title.maintitleLearning Gradients with Gaussian Processesen
local.output.categorydescriptionB1 Chapter in a Scholarly Booken
local.relation.urlhttp://trove.nla.gov.au/work/38088900en
local.search.authorJiang, Xinweien
local.search.authorGao, Junbinen
local.search.authorWang, Tianjiangen
local.search.authorKwan, Paul Hen
local.uneassociationUnknownen
local.year.published2010en
Appears in Collections:Book Chapter
Files in This Item:
3 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

1
checked on Jul 6, 2024

Page view(s)

1,232
checked on Apr 7, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.