Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/7551
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Goddard, Cliff | en |
dc.contributor.author | Schalley, Andrea | en |
local.source.editor | Editor(s): Nitin Indurkhya, Fred J Damerau | en |
dc.date.accessioned | 2011-05-25T17:12:00Z | - |
dc.date.issued | 2010 | - |
dc.identifier.citation | Handbook of Natural Language Processing, p. 93-120 | en |
dc.identifier.isbn | 9781420085938 | en |
dc.identifier.isbn | 9781420085921 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/7551 | - |
dc.description.abstract | Two important themes form the grounding for the discussion in this chapter. First, there is great value in conducting semantic analysis, as far as possible, in such a way as to reflect the cognitive reality of ordinary speakers. This makes it easier to model the intuitions of native speakers and to simulate their inferencing processes, and it facilitates human-computer interactions via querying processes, and the like. Second, there is concern over to what extent it will be possible to.achieve comparability, and, more ambitiously, interoperability, between different systems of semantic description. For both reasons, it is highly desirable if semantic analyses can be conducted in terms of intuitive representations, be it in simple ordinary language or by way of other intuitively accessible representations. | en |
dc.language | en | en |
dc.publisher | Chapman & Hall/CRC | en |
dc.relation.ispartof | Handbook of Natural Language Processing | en |
dc.relation.ispartofseries | Chapman & Hall/CRC Machine Learning & Pattern Recognition Series | en |
dc.relation.isversionof | 2 | en |
dc.title | Semantic Analysis | en |
dc.type | Book Chapter | en |
dc.subject.keywords | Knowledge Representation and Machine Learning | en |
dc.subject.keywords | Information and Computing Sciences | en |
local.contributor.firstname | Cliff | en |
local.contributor.firstname | Andrea | en |
local.subject.for2008 | 089999 Information and Computing Sciences not elsewhere classified | en |
local.subject.for2008 | 170203 Knowledge Representation and Machine Learning | en |
local.subject.seo2008 | 899999 Information and Communication Services not elsewhere classified | en |
local.identifier.epublications | vtls086593006 | en |
local.profile.school | School of Behavioural, Cognitive and Social Sciences | en |
local.profile.school | Administration | en |
local.profile.email | cgoddard@une.edu.au | en |
local.profile.email | aschalle@une.edu.au | en |
local.output.category | B1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20100928-152342 | en |
local.publisher.place | Boca Raton, United States of America | en |
local.identifier.totalchapters | 26 | en |
local.format.startpage | 93 | en |
local.format.endpage | 120 | en |
local.contributor.lastname | Goddard | en |
local.contributor.lastname | Schalley | en |
dc.identifier.staff | une-id:cgoddard | en |
dc.identifier.staff | une-id:aschalle | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:7720 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Semantic Analysis | en |
local.output.categorydescription | B1 Chapter in a Scholarly Book | en |
local.relation.url | http://www.crcpress.com/product/isbn/9781420085921 | en |
local.relation.url | http://www.crcnetbase.com/doi/abs/10.1201/9781420085938-c5 | en |
local.relation.url | http://trove.nla.gov.au/work/36340499 | en |
local.search.author | Goddard, Cliff | en |
local.search.author | Schalley, Andrea | en |
local.uneassociation | Unknown | en |
local.year.published | 2010 | en |
Appears in Collections: | Book Chapter |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
1,800
checked on Mar 31, 2024
Download(s)
4
checked on Mar 31, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.