Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/5677
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Lingyu | en |
dc.contributor.author | Leedham, Graham | en |
local.source.editor | Editor(s): Y. Wang & Y. Cheung & and H. Liu | en |
dc.date.accessioned | 2010-04-21T09:44:00Z | - |
dc.date.issued | 2007 | - |
dc.identifier.citation | Computational Intelligence and Security, p. 935-942 | en |
dc.identifier.isbn | 9783540743767 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/5677 | - |
dc.description.abstract | In vein pattern biometrics, analysis of the shape of the vein pattern is the most critical task for person identification. One of best representations of the shape of vein patterns is the skeleton of the pattern. Many traditional skeletonization algorithms are based on binary images. In this paper, we propose a novel technique that utilizes the watershed algorithm to extract the skeletons of vein patterns directly from gray-scale images. This approach eliminates the segmentation stage, and hence prevents any error occurring during this process from propagating to the skeletonization stage. Experiments are carried out on a thermal vein pattern images database. Results show that watershed algorithm is capable of extracting the skeletons of the veins effectively, and also avoids any artifacts introduced by the binarization stage. | en |
dc.language | en | en |
dc.publisher | Springer | en |
dc.relation.ispartof | Computational Intelligence and Security | en |
dc.relation.ispartofseries | Lecture Notes in Computer Science | en |
dc.relation.isversionof | 1 | en |
dc.title | A Watershed Algorithmic Approach for Gray-Scale Skeletonization in Thermal Vein Pattern Biometrics | en |
dc.type | Book Chapter | en |
dc.identifier.doi | 10.1007/978-3-540-74377-4_98 | en |
dc.subject.keywords | Computer Vision | en |
dc.subject.keywords | Artificial Intelligence and Image Processing | en |
dc.subject.keywords | Image Processing | en |
local.contributor.firstname | Lingyu | en |
local.contributor.firstname | Graham | en |
local.subject.for2008 | 080104 Computer Vision | en |
local.subject.for2008 | 080106 Image Processing | en |
local.subject.for2008 | 080199 Artificial Intelligence and Image Processing not elsewhere classified | en |
local.subject.seo2008 | 890299 Computer Software and Services not elsewhere classified | en |
local.subject.seo2008 | 810199 Defence not elsewhere classified | en |
local.subject.seo2008 | 810107 National Security | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | cleedham@une.edu.au | en |
local.output.category | B1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20100416-104617 | en |
local.publisher.place | Berlin, Germany | en |
local.identifier.totalchapters | 116 | en |
local.format.startpage | 935 | en |
local.format.endpage | 942 | en |
local.identifier.scopusid | 38349001532 | en |
local.series.issn | 1611-3349 | en |
local.series.issn | 0302-9743 | en |
local.series.number | 4456 | en |
local.contributor.lastname | Wang | en |
local.contributor.lastname | Leedham | en |
dc.identifier.staff | une-id:cleedham | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:5813 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | A Watershed Algorithmic Approach for Gray-Scale Skeletonization in Thermal Vein Pattern Biometrics | en |
local.output.categorydescription | B1 Chapter in a Scholarly Book | en |
local.search.author | Wang, Lingyu | en |
local.search.author | Leedham, Graham | en |
local.uneassociation | Unknown | en |
local.year.published | 2007 | en |
Appears in Collections: | Book Chapter |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
10
checked on Dec 7, 2024
Page view(s)
1,190
checked on Jun 23, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.