Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/14595
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gondro, Cedric | en |
dc.contributor.author | Porto-Neto, Laercio R | en |
dc.contributor.author | Lee, S H | en |
local.source.editor | Editor(s): Cedric Gondro, Julius van der Werf, Ben Hayes | en |
dc.date.accessioned | 2014-04-08T11:23:00Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Genome-Wide Association Studies and Genomic Predictions, p. 1-17 | en |
dc.identifier.isbn | 9781627034470 | en |
dc.identifier.isbn | 9781627034463 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/14595 | - |
dc.description.abstract | In recent years R has become de facto statistical programming language of choice for statisticians and it is also arguably the most widely used generic environment for analysis of high-throughput genomic data. In this chapter we discuss some approaches to improve performance of R when working with large SNP datasets. | en |
dc.language | en | en |
dc.publisher | Humana Press | en |
dc.relation.ispartof | Genome-Wide Association Studies and Genomic Predictions | en |
dc.relation.ispartofseries | Methods in Molecular Biology | en |
dc.relation.isversionof | 1 | en |
dc.title | R for Genome-Wide Association Studies | en |
dc.type | Book Chapter | en |
dc.identifier.doi | 10.1007/978-1-62703-447-0_1 | en |
dc.subject.keywords | Quantitative Genetics (incl Disease and Trait Mapping Genetics) | en |
local.contributor.firstname | Cedric | en |
local.contributor.firstname | Laercio R | en |
local.contributor.firstname | S H | en |
local.subject.for2008 | 060412 Quantitative Genetics (incl Disease and Trait Mapping Genetics) | en |
local.subject.seo2008 | 970106 Expanding Knowledge in the Biological Sciences | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | Animal Science | en |
local.profile.school | Animal Science | en |
local.profile.email | cgondro2@une.edu.au | en |
local.output.category | B1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20130829-122010 | en |
local.publisher.place | New York, United States of America | en |
local.identifier.totalchapters | 26 | en |
local.format.startpage | 1 | en |
local.format.endpage | 17 | en |
local.series.issn | 1940-6029 | en |
local.series.issn | 1064-3745 | en |
local.series.number | 1019 | en |
local.contributor.lastname | Gondro | en |
local.contributor.lastname | Porto-Neto | en |
local.contributor.lastname | Lee | en |
dc.identifier.staff | une-id:cgondro2 | en |
dc.identifier.staff | une-id:lportone | en |
local.profile.orcid | 0000-0003-0666-656X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:14810 | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | R for Genome-Wide Association Studies | en |
local.output.categorydescription | B1 Chapter in a Scholarly Book | en |
local.relation.url | http://trove.nla.gov.au/version/198468706 | en |
local.search.author | Gondro, Cedric | en |
local.search.author | Porto-Neto, Laercio R | en |
local.search.author | Lee, S H | en |
local.uneassociation | Unknown | en |
local.year.published | 2013 | en |
local.subject.for2020 | 310506 Gene mapping | en |
local.subject.seo2020 | 280102 Expanding knowledge in the biological sciences | en |
Appears in Collections: | Book Chapter |
Files in This Item:
File | Description | Size | Format |
---|
SCOPUSTM
Citations
10
checked on Jan 18, 2025
Page view(s)
1,166
checked on Sep 24, 2023
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.