Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/12392
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGondro, Cedricen
dc.contributor.authorKwan, Paul Hen
local.source.editorEditor(s): Shawkat Ali, Noureddine Abbadeni, Mohamed Batoucheen
dc.date.accessioned2013-04-09T17:23:00Z-
dc.date.issued2012-
dc.identifier.citationMultidisciplinary Computational Intelligence Techniques: Applications in Business, Engineering, and Medicine, p. 351-377en
dc.identifier.isbn9781466618305en
dc.identifier.isbn9781466618312en
dc.identifier.isbn9781466618329en
dc.identifier.urihttps://hdl.handle.net/1959.11/12392-
dc.descriptionChapter reprinted in Information Resources Management Association. (2013). <em>Bioinformatics: Concepts, Methodologies, Tools, and Applications</em>. Volume 1. Medical Information Science Reference, p. 105-129en
dc.description.abstractEvolutionary Computation (EC) is a branch of Artificial Intelligence which encompasses heuristic optimization methods loosely based on biological evolutionary processes. These methods are efficient in finding optimal or near-optimal solutions in large, complex non-linear search spaces. While evolutionary algorithms (EAs) are comparatively slow in comparison to deterministic or sampling approaches, they are also inherently parallelizable. As technology shifts towards multi core and cloud computing, this overhead becomes less relevant, provided a parallel framework is used. In this chapter the authors discuss how to implement and run parallel evolutionary algorithms in the popular statistical programming language R. R has become the de facto language for statistical programming and it is widely used in bio statistics and bio informatics due to the availability of thousands of packages to manipulate and analyze data. It is also extremely easy to parallelize routines within R, which makes it a perfect environment for evolutionary algorithms. EC' is a large field of research, and many different algorithms have been proposed. While there is no single silver bullet that can handle all classes of problems, an algorithm that is extremely simple, efficient, and with good generalization properties is Differential Evolution (DE). Herein the authors discuss step-by-step how to implement DE in R and how to parallelize it. They then illustrate with a to y genome-wide association study (GWAS) how to indent candidate regions associated with a quantitative trait of interest.en
dc.languageenen
dc.publisherInformation Science Referenceen
dc.relation.ispartofMultidisciplinary Computational Intelligence Techniques: Applications in Business, Engineering, and Medicineen
dc.relation.isversionof1en
dc.titleParallel Evolutionary Computation in Ren
dc.typeBook Chapteren
dc.identifier.doi10.4018/978-1-4666-1830-5.ch020en
dc.subject.keywordsBio informatics Softwareen
dc.subject.keywordsDistributed and Grid Systemsen
dc.subject.keywordsNeural, Evolutionary and Fuzzy Computationen
local.contributor.firstnameCedricen
local.contributor.firstnamePaul Hen
local.subject.for2008080108 Neural, Evolutionary and Fuzzy Computationen
local.subject.for2008080301 Bio informatics Softwareen
local.subject.for2008080501 Distributed and Grid Systemsen
local.subject.seo2008970108 Expanding Knowledge in the Information and Computing Sciencesen
local.subject.seo2008970111 Expanding Knowledge in the Medical and Health Sciencesen
local.subject.seo2008890201 Application Software Packages (excl. Computer Games)en
local.identifier.epublicationsvtls086642581en
local.profile.schoolSchool of Environmental and Rural Scienceen
local.profile.schoolSchool of Science and Technologyen
local.profile.emailcgondro2@une.edu.auen
local.profile.emailwkwan2@une.edu.auen
local.output.categoryB1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20120528-150943en
local.publisher.placeHershey, United States of Americaen
local.identifier.totalchapters21en
local.format.startpage351en
local.format.endpage377en
local.contributor.lastnameGondroen
local.contributor.lastnameKwanen
dc.identifier.staffune-id:cgondro2en
dc.identifier.staffune-id:wkwan2en
local.profile.orcid0000-0003-0666-656Xen
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:12599en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleParallel Evolutionary Computation in Ren
local.output.categorydescriptionB1 Chapter in a Scholarly Booken
local.relation.urlhttp://trove.nla.gov.au/version/178336445en
local.search.authorGondro, Cedricen
local.search.authorKwan, Paul Hen
local.uneassociationUnknownen
local.atsiresearchNoen
local.sensitive.culturalNoen
local.year.published2012en
local.subject.for2020460203 Evolutionary computationen
local.subject.for2020460103 Applications in life sciencesen
local.subject.for2020460601 Cloud computingen
local.subject.seo2020220401 Application software packagesen
local.subject.seo2020280115 Expanding knowledge in the information and computing sciencesen
Appears in Collections:Book Chapter
Files in This Item:
3 files
File Description SizeFormat 
Show simple item record

Page view(s)

1,208
checked on Jul 7, 2024

Download(s)

6
checked on Jul 7, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.