Please use this identifier to cite or link to this item:
https://hdl.handle.net/1959.11/12392
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gondro, Cedric | en |
dc.contributor.author | Kwan, Paul H | en |
local.source.editor | Editor(s): Shawkat Ali, Noureddine Abbadeni, Mohamed Batouche | en |
dc.date.accessioned | 2013-04-09T17:23:00Z | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | Multidisciplinary Computational Intelligence Techniques: Applications in Business, Engineering, and Medicine, p. 351-377 | en |
dc.identifier.isbn | 9781466618305 | en |
dc.identifier.isbn | 9781466618312 | en |
dc.identifier.isbn | 9781466618329 | en |
dc.identifier.uri | https://hdl.handle.net/1959.11/12392 | - |
dc.description | Chapter reprinted in Information Resources Management Association. (2013). <em>Bioinformatics: Concepts, Methodologies, Tools, and Applications</em>. Volume 1. Medical Information Science Reference, p. 105-129 | en |
dc.description.abstract | Evolutionary Computation (EC) is a branch of Artificial Intelligence which encompasses heuristic optimization methods loosely based on biological evolutionary processes. These methods are efficient in finding optimal or near-optimal solutions in large, complex non-linear search spaces. While evolutionary algorithms (EAs) are comparatively slow in comparison to deterministic or sampling approaches, they are also inherently parallelizable. As technology shifts towards multi core and cloud computing, this overhead becomes less relevant, provided a parallel framework is used. In this chapter the authors discuss how to implement and run parallel evolutionary algorithms in the popular statistical programming language R. R has become the de facto language for statistical programming and it is widely used in bio statistics and bio informatics due to the availability of thousands of packages to manipulate and analyze data. It is also extremely easy to parallelize routines within R, which makes it a perfect environment for evolutionary algorithms. EC' is a large field of research, and many different algorithms have been proposed. While there is no single silver bullet that can handle all classes of problems, an algorithm that is extremely simple, efficient, and with good generalization properties is Differential Evolution (DE). Herein the authors discuss step-by-step how to implement DE in R and how to parallelize it. They then illustrate with a to y genome-wide association study (GWAS) how to indent candidate regions associated with a quantitative trait of interest. | en |
dc.language | en | en |
dc.publisher | Information Science Reference | en |
dc.relation.ispartof | Multidisciplinary Computational Intelligence Techniques: Applications in Business, Engineering, and Medicine | en |
dc.relation.isversionof | 1 | en |
dc.title | Parallel Evolutionary Computation in R | en |
dc.type | Book Chapter | en |
dc.identifier.doi | 10.4018/978-1-4666-1830-5.ch020 | en |
dc.subject.keywords | Bio informatics Software | en |
dc.subject.keywords | Distributed and Grid Systems | en |
dc.subject.keywords | Neural, Evolutionary and Fuzzy Computation | en |
local.contributor.firstname | Cedric | en |
local.contributor.firstname | Paul H | en |
local.subject.for2008 | 080108 Neural, Evolutionary and Fuzzy Computation | en |
local.subject.for2008 | 080301 Bio informatics Software | en |
local.subject.for2008 | 080501 Distributed and Grid Systems | en |
local.subject.seo2008 | 970108 Expanding Knowledge in the Information and Computing Sciences | en |
local.subject.seo2008 | 970111 Expanding Knowledge in the Medical and Health Sciences | en |
local.subject.seo2008 | 890201 Application Software Packages (excl. Computer Games) | en |
local.identifier.epublications | vtls086642581 | en |
local.profile.school | School of Environmental and Rural Science | en |
local.profile.school | School of Science and Technology | en |
local.profile.email | cgondro2@une.edu.au | en |
local.profile.email | wkwan2@une.edu.au | en |
local.output.category | B1 | en |
local.record.place | au | en |
local.record.institution | University of New England | en |
local.identifier.epublicationsrecord | une-20120528-150943 | en |
local.publisher.place | Hershey, United States of America | en |
local.identifier.totalchapters | 21 | en |
local.format.startpage | 351 | en |
local.format.endpage | 377 | en |
local.contributor.lastname | Gondro | en |
local.contributor.lastname | Kwan | en |
dc.identifier.staff | une-id:cgondro2 | en |
dc.identifier.staff | une-id:wkwan2 | en |
local.profile.orcid | 0000-0003-0666-656X | en |
local.profile.role | author | en |
local.profile.role | author | en |
local.identifier.unepublicationid | une:12599 | en |
dc.identifier.academiclevel | Academic | en |
dc.identifier.academiclevel | Academic | en |
local.title.maintitle | Parallel Evolutionary Computation in R | en |
local.output.categorydescription | B1 Chapter in a Scholarly Book | en |
local.relation.url | http://trove.nla.gov.au/version/178336445 | en |
local.search.author | Gondro, Cedric | en |
local.search.author | Kwan, Paul H | en |
local.uneassociation | Unknown | en |
local.atsiresearch | No | en |
local.sensitive.cultural | No | en |
local.year.published | 2012 | en |
local.subject.for2020 | 460203 Evolutionary computation | en |
local.subject.for2020 | 460103 Applications in life sciences | en |
local.subject.for2020 | 460601 Cloud computing | en |
local.subject.seo2020 | 220401 Application software packages | en |
local.subject.seo2020 | 280115 Expanding knowledge in the information and computing sciences | en |
Appears in Collections: | Book Chapter |
Files in This Item:
File | Description | Size | Format |
---|
Page view(s)
1,208
checked on Jul 7, 2024
Download(s)
6
checked on Jul 7, 2024
Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.