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Abstract
Accurate, non-destructive forecasting of carrot yield is difficult due to its subterranean 
growing habit. Furthermore, the timing of forecasting usually occurs when the crop 
is mature, limiting the opportunity to implement alternative management decisions to 
improve yield (during the growing season). This study aims to improve the accuracy of 
carrot yield forecasting by exploring time series and multivariate approaches. Using Sen-
tinel-2 satellite imagery in three Australian vegetable regions, we established a time series 
of carrot phenological stages (PhS) from ‘days after sowing’ (DAS) to enhance prediction 
timing. Numerous vegetation indices (VIs) were analyzed to derive temporal growth pat-
terns. Correlations with yield at different PhS were established. Although the average root 
yield (t  ha−1) did not significantly differ across the regions, the temporal VI signatures, 
indicating different regional crop growth trends, did vary as well as the PhS at when the 
maximum correlation with yield occurred ( PhS

R2max
) with two of the regions producing a 

delayed PhS
R2max

 (i.e. 90–130 DAS). The best multivariate model was identified at 70 DAS, 
extending the forecasting window before harvest between 20 to 60 days. The performance 
of this model was validated with new crops producing an average error of 16.9 t ha−1 (27% 
of total yield). These results demonstrate the potential of the model at such early stage 
under varying growing conditions offering growers and stakeholders the chance to opti-
mize farming practices, make informed decisions on selling, harvesting, and labor plan-
ning, and adopt precision agriculture methods.
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Introduction

Accurate pre-harvest yield forecasting is essential for all agricultural and horticultural 
industries as it helps growers (and the greater industry) be better prepared to meet market 
demands and respond to potential production issues such as seasonal, location and vari-
etal variability and climate volatility. Whilst there has been extensive research on the accu-
racy of remote sensing (RS) for the yield forecasting of grains crops (Weiss et al., 2020), 
there has been little work on similar applications in horticulture and even less on carrots. 
This paper addresses this shortfall by evaluating the accuracy of RS for forecasting yield in 
commercial carrot crops grown over multiple seasons and locations within Australia.

Carrot is an important vegetable crop due to the high nutrient content and benefits for 
human health (Que et al., 2019). However, forecasting carrot yield is not a common prac-
tice. This is likely because carrots grow underground, and the farming systems used are 
often intensive, characterised by small planting areas, spatially dispersed crop planting (i.e. 
crops distributed with spatial gaps), and usually involve crop rotation. These characteristics 
also limit the development and adoption of commercial carrot yield monitors or other tech-
nological developments that allow growers to have a clear understanding of the within-field 
yield variability.

In a recent study by Schauberger et al. (2020), 362 studies on the yield forecasting were 
identified from a query to the Web of Science® from 2004 to 2019. In reference to horti-
cultural crops, 12 papers explored potatoes, olives (9), citrus (5), apples (4), mangoes (3), 
strawberry (2) and none in carrots. Subsequent to this review, Suarez (2020) explored the 
accuracies of hyperspectral data, Sentinel-2 (S2) and Worldview-3 (WV3) satellite imagery 
for forecasting carrot yield prior harvesting as a surrogate approach for yield monitors.

While accurate crop yield forecasting can be achieved using various RS platforms and 
sensors (satellite, airborne, UAV, proximal) (Weiss et al., 2020), it is crucial to consider the 
intricate interactions between canopy reflectance properties and factors such as crop type, 
phenological stages, plant densities, soil type, and agro-climatic zones (Al-Gaadi et  al., 
2016; Mkhabela et  al., 2011). Vegetation indices (VIs) have been developed to measure 
different biophysical or biochemical variables of crops, such as water status, chlorophyll 
content, or biomass (Zarco-Tejada et al., 2005). These VIs change during the growing sea-
son, reflecting variations in crop variables that, in turn, impact crop status, strongly cor-
related with yield (Schlemmer et al., 2013). VIs thus act as proxies for yield forecasting 
(Shanahan et al., 2001). To establish robust relationships with yield, reflectance-based data 
must be calibrated to account for these influences.

The most simplistic calibration approaches are linear or non-linear regressions using 
reflectance information usually in the form of IVIs to estimate biophysical variables 
(Schauberger et al., 2020). Although simple, these methods are statistically preferable as 
they are easier to interpret, are less likely to overfit and have been proven accurate (Robson 
et  al., 2017; Suarez et  al., 2020). Bolton and Friedl (2013) established relevant univari-
ate linear regressions between Normalised difference vegetation index (NDVI), the two-
band Enhanced vegetation index (EVI2) and Normalised difference water index (NDWI) 
derived from MODIS to maize and soybean yield, at the regional level. Due to the influence 
of phenological growth stage on the reflectance properties of the crop, yield predictions 
from the linear models improved when they included days after sowing (DAS) or ‘greenup’ 
instead of the “day of the year”. From this analysis, 70 and 80 DAS were identified to be 
the optimum growth stage that produced the highest correlation between the VIs and maize 
and soybean yield, respectively. Of the VI tested, NDWI produced the highest correlation 
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to yield in maize (R2 = 0.58) and EVI2 for soybean (R2 = 0.70). For potato (another subter-
ranean root crop), Al-Gaadi et  al. (2016) obtained prediction errors of between 7.9 and 
13.5% from Landsat-8 and between 3.8 and 10.2% from S2 using a univariate approach a 
few day prior harvesting.

Although in recent times more robust regression approaches including Machine Learn-
ing (ML) and Artificial Intelligence (AI) algorithms have gained popularity for the fore-
casting of crop yield from remote sensing, their capacity to accurately extrapolate or fore-
cast under unknown events is often limited in comparison to regression models (Johnson 
et al., 2016; Shaub, 2020). These approaches also require large datasets for calibration and 
then validation of the models. Johnson et al. (2016) tested multivariate linear regressions 
(MLR), Bayesian neural networks (BNN) and Model-based recursive partitioning mod-
els for predicting the yield of barley, canola and spring wheat over the Canadian Prairies 
between 2000 and 2011. The authors used NDVI and EVI from AVHRR and MODIS as 
predictors (i.e. MODIS-NDVI, MODIS-EVI and NOAA-NDVI) and hierarchically clus-
tered the crops (i.e. prairies) at different geographical levels. Whilst accuracies did vary 
per crop, the MLR models with NDVI and EVI as predictors produced significantly higher 
forecasting accuracies. The interaction of NDVI and EVI (NDVI x EVI) was found more 
accurate in the forecasting of barley than canola or spring wheat yields. The rationale 
behind this results is the linear relationship found between MODIS-NDVI and each crop 
yield. Similarly, a study by Gomez et al. (2019) reported that machine learning algorithms 
produced the lowest prediction error (at the block level = 11.2%.) using S2 for potato yield 
forecasting 2 months prior harvesting.

From previous studies, there is not one conclusively superior statistical approach for 
forecasting yield from remote sensed data. The accuracies vary according the crop, level 
of association (clustering, global, region and block level), resolution of the imagery and 
timing of capture in relation with the crop growing stage (Tedesco et al., 2021). However, 
one common trend is to find the point in time with the highest correlation between RS 
data and crop yield (Bala & Islam, 2009; Tedesco et al., 2021; Zhao et al., 2007). Tedesco 
et al. (2021) demonstrated that VIs serve as effective proxies for monitoring the temporal 
changes in sweet potato crops and distinguishing between their phenological stages. They 
found that the period of active growth (200–500 growing degree days, GDD) resulted in 
the smallest yield prediction errors, regardless of the season (i.e., summer or winter). In a 
similar vein, Ayu Purnamasari et al. (2019) identified the greenup period as the most suit-
able for predicting cassava yields using VIs derived from S2 satellite imagery and biophys-
ical properties. Bala and Islam (2009) identified the optimal period for forecasting potato 
tuber yield using MODIS imagery as being between 48 and 64 DAS within a growing 
season of approximately 96 days. In contrast, Suarez et al. (2020) achieved overall accu-
racies, represented as percentage errors (%), ranging from 9.2 to 12.7% when estimating 
carrot root yield using WV3 satellite imagery. These estimations were made approximately 
4 weeks before harvest and were conducted across various vegetable growing regions in 
Australia. The ranges for optimal yield estimation are often from the middle to the end of 
season, with the latter being too late in the growing season for growers to implement alter-
native management changes to maximise yields.

As one methodology to achieve earlier yield forecasts, Rahman and Robson (2016) 
developed a two-step ‘time series’ approach using historic Landsat imagery and cor-
responding annual yield data that accurately depicted the growth profile of sugarcane 
using the Green normalised difference vegetation index (GNDVI). The authors fitted 
a quadratic equation using the annual growing profile and identified single images 
acquired in April (3 months prior to harvest) achieved the highest correlations to yield 
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as this period represented when all regional crops had reached full canopy cover and 
had not yet started senescence. From these quadratic equations it was possible to esti-
mate the maximum GNDVI value from any capture date and then input this value into 
a second linear equation between maximum GNDVI and yield. This methodology pro-
vided a large window in which imagery could be used to forecast yield (Feb–June). This 
is particularly useful in regions of continual cloud cover and extended planting periods.

For the forecasting of carrot yield from RS data an understanding of the seasonal growth 
profile, as measured from changes in canopy reflectance, needs to be established. This will 
indicate spectral changes associated with growth stages, seasonal, locational, varietal and 
management influences. From here, the attempt to develop yield forecasting can be better 
addressed in terms of identifying what period is best correlated with yield and how robust 
that relationship is. Therefore, the aim of this study is to develop a yield forecasting algo-
rithm for carrot from remotely sensed imagery and to identify the optimum capture win-
dow (OCW), under the hypotheses that:

1.	 VI values change per growing region, sowing arrangement, and per growing stage (Rapa-
port et al., 2014; Suarez et al., 2017; Tedesco et al., 2021);

2.	 The relationship between VIs and yield varies during the growing period (Wang et al., 
2016);

3.	 VIs can be used as predictors of crop yield (Robson et al., 2017; Shanahan et al., 2001);
4.	 The integration of more than one VI increases the prediction accuracy earlier in the 

season compared to using a single VI (to be tested).
5.	 The regression fit needs to be both robust and simple enough to facilitate interpretation 

and industry adoption.

This paper addresses an important root crop (carrots) where research is lacking and the 
provision of yield forecasts early in the season is not available. We will demonstrate that 
the growing pattern as indicated by VIs varies per growing region. We will optimize the 
capture window to provide yield forecast as early as possible regardless of region by inte-
grating different structure-based, pigment-based and water-related VIs in a multivariate 
analysis so a unique generic algorithm can be used among seasons and locations, facilitat-
ing the adoption by growers.

Material and methods

Study area

For this study three major vegetable (carrot) growing regions were selected from both the 
sub-tropical (Western Australia—WA and Queensland—Qld) and the temperate (Tas-
mania—Tas) climatic regions of Australia (Fig. 1). The soil type was variable across the 
regions. Arenosol soils with low water holding capacity dominate in WA, alluvial vertisols 
or cracking clay soil dominance in Qld and nitosoil soils occur in Tas. More information 
regarding the growing window of each region and management practices can be found in 
Suarez et al. (2020).
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Crop distribution and field data collection

The carrot crops selected for this study exhibited similar planting and harvest dates within 
each growing region. Carrots are predominantly grown during the winter-spring season in 
Qld (with a crop duration ranging from 115 to 150 days), in summer in Tas (125 days), and 
throughout the year in WA (with a duration of 130–165 days). Data collection occurred 
between March 2017 and January 2019, encompassing four growing periods in Qld and 
two in both Tas and WA (Table 1).

Crop boundaries of between seven to sixteen carrot fields per region were manually 
delineated from high resolution images from WV3 acquired over each region (Fig.  1). 
WV3 provides 8 multispectral bands in the visible (VIS) and near-infrared (NIR) with a 
spatial resolution of 1.24 m, 8 Short-wave infrared (SWIR) bands (3.7 m) and 12 bands to 
map clouds, aerosol, water vapor, ice and snow (CAVIS at 30 m spatial resolution) (Digi-
talGlobe, 2018). For each field carrot crop, NDVI derived from WV3 images was calcu-
lated and Iso Cluster unsupervised classification (Ball & Hall, 1965) was used to assign 
each NDVI pixel value into one of 8 vigor classes (from very low to very high). Clas-
sification thresholds were assigned per field. Six sample areas (located over low, medium 
and high vigor zones) were randomly selected and a total of 18 areas per field crop were 
manually sampled for whole plant carrot yield assessment in an area defined according 
to the sowing arrangement (~ 1–2  m2). The manually harvested carrot yield from the 18 
areas per crop were averaged and converted into t  ha−1. This sampling methodology was 
applied to ensure that the variability of canopy reflectance and therefore yield variation 

Fig. 1   Study area for carrot yield forecasting including three vegetable growing regions in Australia (WA 
Western Australia, Qld Queensland, Tas Tasmania) with location of the investigated carrot fields
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was encompassed within each field crop (Suarez et  al., 2020). Crop quality assessment 
(grading) was performed for each of the samples (visual assessment of individual carrots) 
using standards defined in commercial practices. Leaves (fresh biomass) were removed 
from roots, weighed and converted into t ha−1 for additional analysis (data no presented).

Satellite image acquisition for time series analysis

S2 satellite imagery (Level 1C product), available in Google Earth Engine (GEE) (Gorelick 
et al., 2017), was evaluated for each of the growing seasons. This product level (1C) pro-
vides a Top-Of-Atmosphere reflectance product (TOA) produced by The European Space 
Agency (ESA). (European Space Agency, 2023). The lowest 1% of pixel values in each 
tile per band were selected to remove the darkest pixels in the image, which are likely can-
didates for dark objects. Cloud cover analysis was performed for each of the carrot crop 
fields across the growing periods and only cloud-free images over the fields were retained. 
A total of 99 captures were analyzed, including 43 over the Qld crops, and 28 for each of 
the WA and Tas regions.

Satellite data extraction

The field crop boundaries, including the respective field crop ID, sowing date (SDate) and 
average yield (t  ha−1) were imported into GEE using Google Fusion Tables. In GEE, a 
query based on sowing and harvest date was used to select the S2-L1C imagery available 
for each growing season. VIs (listed in Table  2) were calculated and the mean value of 
each multispectral band and VI was extracted per field crop. A data table was generated 
per region, which contained the crop information (i.e. crop ID, yield, SDate), capture date 
(CDate) and the reflectance values for all the available multispectral bands and the VIs. An 
R software script (R Core Team, 2014), was designed to import the resulting data tables 
from GEE and to run the required exploratory and statistical analysis. Time series were 
produced based on the calculation of the DAS:

 

(1)DAS = CDate − SDate

Table 1   Carrot field crops 
growing periods by region 
included in this study

Qld Queensland, Tas Tasmania, WA Western Australia

Region Growing period

Sowing Harvest Year

Qld Mar–Apr Aug 2017
Jun–Jul Dec 2017
Mar–Apr Aug 2018
May–Jun Nov 2018

Tas Oct–Nov Jan 2017
Oct–Nov Jan 2018

WA Jan–Feb May 2017
Mar–Apr Sep–Oct 2018
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Table 2   Sentinel-2 bands and vegetation indices (VIs) tested in this study

Band Central wavelength 
(nm)

Spatial resolution 
(m)

References

Blue (B) 490 10 Sentinel-2 PDGS 
Project Team 
(2011)

Green (G) 560 10
Red (R) 665 10
Red Edge (RE) 705 20
Red Edge 740 (RE740) 740 20
Red Edge 783 (RE783) 783 20
Near Infrared (NIR) 842 10
Near Infrared 2 (NIR2) 865 20
Short wave infrared (SWIR1610) 1610 20
Short wave infrared (SWIR2190) 2190 20

Vegetation Index Formula References

Canopy Chlorophyll Content 
Index (CCCI)

(NDRE∕NDVI) Barnes et al. (2000)

Green Chlorophyll Index (CHI) (NIR∕G) − 1
Gitelson et al. (2003)

Enhanced Vegetation Index 2 
(EVI2) 2.5 ∗

[

(NIR−R)

(NIR+(2.4∗R)+1)

] Jiang et al. (2008)

Green Normalized Difference 
Vegetation Index (GNDVI)

(NIR − G)∕(NIR + G) Gitelson et al. (1996)

Green Red Vegetation Index 
(GRVI)

(G − R)∕(G + R) Tucker (1979)

Normalized Difference Red Edge 
(NDRE)

(NIR − RE)∕(NIR + RE) Gitelson and Merzlyak (1994)

Normalized Difference Red Edge 
740 (NDRE740)

(

NIR − RE
740

)

∕
(

NIR + RE
740

)

Adjusted from Gitelson and 
Merzlyak (1994)

Normalized Difference Red Edge 
783 (NDRE783)

(

NIR − RE
783

)

∕
(

NIR + RE
783

)

Normalized Difference Red Edge 
865 (NDRE865)

(

NIR − RE
865

)

∕
(

NIR + RE
865

)

Normalized Difference Turbidity 
Index (NDTI)

(R − G)∕(R + G) Lacaux et al. (2007)

Normalized Difference Vegeta-
tion Index (NDVI)

(NIR − R)∕(NIR + R) Rouse et al. (1974)

Modified Normalised differenced 
Water Index (NDWI)

(

SWIR
1610

− G
)

∕
(

SWIR
1610

+ G
)

Xu (2006)

Red Edge Normalized Difference 
Vegetation Index (RENDVI)

(RE − R)∕(RE + R) Gobron et al. (2000)

Soil Adjusted Vegetation Index 
(SAVI)

(1 + L) ∗

[

(NIR−R)

(NIR+R+L)

]

 ; L = 0.5 Huete (1988)

Structure Insensitive Pigment 
Index (SIPI)

(NIR − B)∕(NIR − R) Peñuelas et al. (1995)

Simple Ratio (SR) NIR∕R Jordan (1969)
Green Simple Ratio (SR_G) NIR∕G Gitelson and Merzlyak (1994)
Transformed Chlorophyll 

Absorption Reflectance Index 
(TCARI)

3 ∗

[

(RE − R) − 0.2 ∗ (RE − G) ∗

(

RE

R

)]

Kim et al. (1994)
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VI and reflectance values were interpolated to ± 10 day intervals, stopping at 150 ± 10 
DAS. This produced a time series consisting of eight phenological stages (PhS) (Bolton 
& Friedl, 2013): 10, 30, 50, 70, 90, 110, 130 and 150 DAS with 0 DAS equivalent to 
the SDate. An initial attempt to reduce the interpolation period to ± 5 days was performed. 
However, many crops did not have sufficient images available due to cloud conditions, lim-
iting sample size and the ability to undertake the subsequent statistical analysis. Hence, the 
broader ± 10 day interval was used to guarantee image availability for each PhS.

Carrot canopy reflectance profile and Optimal Capture Window (OCW) for yield 
forecasting per growing region

The VIs measured across each growing region was compared to better understand the vari-
ation of the canopy reflectance both temporally and spatially. The proposed VIs (Table 2) 
include structure-related, pigment-related and water-related indices, enabling them to 
effectively indicate the crop condition within the carrot fields.

The time series of the aggregated VIs values were analyzed per region from which the 
VIs variability could be established (hypothesis 1). To identify the OCW, several univariate 
linear models were fitted, with the derived VIs (Table 2) used as predictor of yield (t ha−1) 
per region and at each PhS. By analyzing the temporal relationship between individual VI 
and yield, we tested the hypothesis that such a relationship is not stable but that it changes 
according to the PhS and the VI (hypothesis 2). As such, once the OCW is established, we 
test the hypothesis that a specific VI can be used to forecast yield (hypothesis 3). The R2 
was plotted per growing region from 0 to 150 DAS and a smoothing method using the local 
polynomial regression fitting (loess) was added to better identify trends.

Accelerating the optimal yield forecasting window capture and validation

Multivariate models for predicting yield were developed in an attempt to reduce the cap-
ture gap (CG) (i.e. time between the SDate and the OCW identified with the univariate 
lineal models). We aimed to test the hypothesis that using this method, yield forecasts can 
be provided earlier in the season (hypothesis 4). Spatial variability (across the 3 regions) 
was also included with the derived VIs into the multivariate linear models. These new 
models were fitted for each DAS using a stepwise regression to identify which VIs best 
described the variability in log(yield) . Log(yield) was identified as a more suitable response 
variable than Yield due to the non-constant variability exhibited by the residuals in all fitted 
models. Upon transforming the response variable, model assumptions were satisfied for all 
DAS (normality, constant variability of residuals, independence). The stepwise regression 
method was carried out based upon the Akaike Information Criterion (AIC) to identify 
the model with the optimal AIC (Burnham & Anderson, 2004). To identify the OCW, the 
coefficient of determination (R2) value was compared for the models fitted for each DAS. 
Independent variables exhibiting multicollinearity were removed from the model, accord-
ing to the generalized variance inflation factor (GVIF) (Fox & Monette, 1992), to produce 
a simplified model for predicting log(yield) at the OCW across the regions.

The resulting ‘best’ models were thoroughly validated with independent datasets 
from Tas and WA regions so these datasets were invisible during the training pro-
cess. The validation dataset included new crops from the same and new seasons that 
were included in the training process. An independent dataset from Qld region was not 
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available and therefore, validation results are only shown for Tas and WA regions. Fig-
ure 2 shows the steps for satellite data extraction, processing and statistical analysis per-
formed in this study.

Results and discussion

Crop profile characterization: spatio‑temporal VI variability

Average reflectance and VI values were calculated at ten-day intervals throughout the 
growing season, displaying distinct profiles across regions (Fig. 3). The spectral curves at 
sampled sites transitioned from very low VI values (similar to bare soils) to increasing 
values, reaching a plateau, and then decreasing between 90 and 130 DAS. This shift signi-
fies the change in crop canopy from active growth to declining condition, consistent with 
the physiological growth stage when carrots maximize photosynthetic capacity (Johansen 
et al., 2015) and when the cessation of the carrot root growth coincides with the fall of the 
shoot weight (Nilsson, 1987). The alignment of VI profiles with crop growth underscores 
the predominant influence of crop development on RS data changes, with soil type play-
ing a minor role. This is evidenced by the spectral profiles depicted by structural-related 
indices (e.g., NDVI, EVI2, SAVI) and pigment-related VIs (CHI, NDRE), whose values 
constantly increased as the crop developed.

VIs such as CHI, NDRE, NDVI and SAVI constantly increased, reaching peak values 
around 90 DAS in the Tas region and 110 DAS in WA and Qld regions. This suggests that 
crops in the Tas region reach their maximum photosynthetic capacity earlier in the growing 
period than the WA and Qld crops, and as result harvested earlier. Other bands or indices 
clearly showed that the growth profile differed between regions during the entire growing 
period (i.e. NDRE740, NDRE783, NDRE865 and TCARI) whist signature of others VIs 
were similar over certain periods. The latter was the case of the SR (up to 50 DAS), SIPI 
(70 DAS–110 DAS), EVI2 and SAVI (up to 90 DAS). These results validate hypothesis 1, 
as the temporal variability of the VIs fluctuates based on both the growing region and the 
specific VI.

Fig. 2   Flowchart of main data collection and processing steps
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Vegetation indices and carrot root yield: variability per region and growing period

Univariate linear models (yield vs. VI) were calculated at each PhS per region to deter-
mine the peak of maximum correlation for yield forecasting, PhSR2max . The regression coef-
ficients (R2) varied per region and VI at different PhS confirming hypothesis 2 (Fig. 4). 
However, the PhS at which the PhSR2max occurred did not always coincide with the PhS at 
which the maximum VI value was achieved ( PhSVImax ) typically falling between 90 to 110 
DAS (Fig. 3). Most of the VIs in the WA region reached maximum correlation with yield 
early in the season (~ 30–50 DAS) after which the relationships started to decline sharply 
until about 90 DAS. This response may indicate that a rapid early vegetative development 
is crucial for the efficient utilization of resources, in terms of yield potential, in a short 
growing period (Evers, 1988; Suojala, 2000b). In Qld region, the PhS at which PhSR2max 

Fig. 3   Smoothed vegetation indices profiles across growing regions at different days after sowing
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occurred was around 130 DAS, indicating that canopy growth did not decline until later 
in the season and that the interaction of senescence of the leaves with carrot growth was 
different than in the WA crops. This interaction may be affected by genotype and the nutri-
tional characteristics of the crops. The lengthy vegetative growth indicates that the Qld 
crops took more time to accumulate the final harvested yield than those in WA (Nilsson, 
1987). However, a prolonged growing season does expose the carrots to increased risk of 
unfavorable environmental conditions such as frost.

In the Tas region, the PhSVImax and PhSR2max were both around 90 DAS for many of 
the indices evaluated (e.g. NDRE, GNDVI, NDRE740, SR_G), suggesting that the PhS 
at which the maximum photosynthetic capacity occurred coincided with the peak of veg-
etation development indicating that root growth gain did not vary much from 110 DAS 
until harvest (around 125 DAS). However, EVI2, SAVI and to some extent SR, showed 

Fig. 4   Smoothed regression coefficient (R2) from univariate linear models for each growing region
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two peaks of correlation to yield: between 30–50 DAS and 90–110 DAS. This suggests 
that there is potential for yield to be estimated earlier in the growing season. Hole et al. 
(1987) reported that the highest differences in relative root growth, defined by the shoot to 
root ratio, can be estimated between 27 and 48 DAS and Suojala (2000a) found that nearly 
60% of the total harvested carrot yield was gained by the middle of the growing season 
after which there was no significant increments in yield gain. This situation can explain the 
capability of RS-derived data for forecasting yield at such early growing stages supporting 
hypothesis 3.

Reducing the capture gap (CG) for early yield forecasting

The PhSR2max differed per region and according to the VI used. It ranged from early, middle 
and late in the growing season (WA, Tas and Qld, respectively). Therefore, it is essential to 
minimize the CG (i.e. number of days from sowing to the forecast date) among the regions 
so the early yield forecast can be used in the current season to quantify and identify the 
extent of underperforming areas.

Multivariate models that included all the multispectral bands, the VIs and all regions 
were generated at each DAS to investigate if it was possible to reduce the CG, in other 
words, to provide earlier yield forecasts. However, these models were over fitted as many 
of the predictors (bands and VIs) showed multi-collinearity. Simplified models were tested 
based on the GVIF values and the VIs with high GVIF were removed until the influence of 
multi-collinearity was reduced. The parameters of the best models per DAS are presented 
in Fig. 5. The predictive capability is similar for 30, 50, 70 and 110 DAS, with moderate R2 
values in the range of 0.5 to 0.62, while the models for 10 and 90 DAS are lower, at 0.35 
and 0.18 respectively. At 130 DAS (close to harvest), the model performs very well, with 
R2 = 0.8 (Fig. 5).

Some VIs are common across most of the best models. NDWI was present in the ‘best’ 
model for 6 of the DAS models, while NDRE740, NDRE783 and TCARI were present 
in 5 models (Table 3). The region variable is present in all models except 90 DAS. Nota-
bly, Vegetation Indices (VIs) related to water and pigment content play a significant role 
in accurately estimating carrot yields. This is attributed to key limiting factors in carrot 

Fig. 5   Performance parameter R2 of the best multivariate models
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crop growth, development, and yield. These factors include a larger photosynthetic surface, 
often quantified as the Leaf Area Index (LAI), which can store more macronutrients such 
as nitrogen (N), phosphorus (P), and potassium (K) (Abdel-Mawly, 2004), as well as an 
ample supply of water (Jeptoo et al., 2013; Reid & Gillespie, 2017). Increased leaf nitrogen 
levels enhance the photosynthetic capacity of vegetation and, consequently, the chlorophyll 
(Chl) content (Gitelson et al., 2003). It’s worth noting that the Red edge bands in remote 
sensing data are highly sensitive to changes in chlorophyll content, which explains their 
consistent presence in the models utilizing these bands directly or via VIs.

The resulting multivariate models were further validated with an independent dataset 
of 18 carrot field crops located in WA (12) and Tas (6) regions. The actual average carrot 
root yield (t h−1) per field crop was provided by the respective growers and compared with 
the forecasted yield (t h−1). The Root Mean Square Error (RMSE) was calculated for each 
DAS model. The best performing model, in terms of adjusted R2, was at 130 DAS. How-
ever, consideration of the best prediction model overall was based on a number of factors, 
including RMSE (Fig. 6) and usefulness of the model in terms of reducing the capture gap. 
The model for 70 DAS performs well in terms of R2 and RMSE, for both the training and 
the validation datasets.

Table 3   Variables included in 
the best models per ‘days after 
sowing’ (DAS)

Variable DAS

10 30 50 70 90 110 130

Region X X X X X X
CCCI X X X
CHI X
EVI2 X
GNDVI X X X X
GRVI X
N1RENDVI
NDFI X X X
NDRE
NDRE740 X X X X X
NDRE783 X X X X X
NDRE865 X X X
NDTI
NDVI
NDWI X X X X X X
NDWI_VIS
RENDVI X X X X
RE740 X X X X
RE783
RE865 X
SAVI X
SIPI X X X X
SR X X X X
SR_G
TCARI X X X X X
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The final optimal model developed for 70 DAS is shown below (Eq. 2):

where Re represents the region effect, comparing Tas and WA regions to the Qld region. 
The adjusted R2 value for this model at 70 DAS is 0.50, and the RMSE is 10.21 t ha−1.

By integrating several VIs in the prediction model, the correlations of crop reflectance 
properties to yield variability may be better explained as different VIs relate to different 
plant properties i.e. vegetative cover, nutritional and water status (Zhao et al., 2007). This 
may explain why the final model that includes multiple variables performed better, as the 
respective VIs have been related to biomass and the physiological condition of the crops 
(SR, GNDVI), as well as biochemical composition (NDRE) and water status (NDWI) 
(Zarco-Tejada et al., 2005). Furthermore, as the generic yield forecast model incorporates 
the spatial variability associated with growing location (region) and its interactions with 
the different VIs, it is therefore more likely to compensate for a wide range of constraints 
that may limit yield. This result validate hypothesis 4 and 5.

Validation of the final optimal model

The total harvested yield for each sampled field crop was provided by the respective 
growers. This value was compared against the predicted yield from Eq.  (2). These 
comparisons are presented in Fig. 7, with the gray colored points corresponding to the 
data used for training the model in Eq.  (2). RMSE for the training dataset was 10.21 

(2)

Log
(

yieldtha−1
)

= 8.25 ∓ 0.390ReTAS + 0.21ReWA

+ (−3.32GNDVI − 2.55NDRE740 − 19.89NDRE783

+16.21NDRE865 + 4.91NDWI − 4.66RENDVI

+0.74RE740 − 0.322SIPI + 0.12SR)
70DAS

Fig. 6   Root mean square error of the best multivariate models
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t  ha−1. Furthermore, yield forecast of 18 additional crops (12 in the WA region and 6 
in the Tas region) was calculated at 70 DAS to validate the fitted model (2). Results 
indicated that the model performed moderately well at predicting yield for WA and 
Tas crops, with a reasonably small RMSE of 16.97 t ha−1 considering that the standard 
deviation of the validation dataset was calculated as 19.32 t ha−1. The validation data 
is presented in Fig. 7 as the black markers.

Limitations

From Fig. 7, the model tended to underestimate yield (i.e. the majority of the fields in 
the validation dataset were below the parity line). There are two outliers (1 for each 
region) in the validation dataset, both with unusually large observed yields. Yields 
around 90–100 t  ha−1 were not common across the sampled fields, and are therefore 
not well represented in the training dataset. The model also tends to under-predict 
yields for these high-observed yield fields in the training dataset, but to a lesser degree. 
There is room to improve the models ability to predict higher yielding crops with the 
inclusion of more training data from crops with higher yields. Future research endeav-
ors could explore the utilization of cumulative Vegetation Indices (VIs) over time. As 
noted by Lai et al. (2018), time-integrated VIs offer a more comprehensive representa-
tion of the phenological cycle when compared to a single-date approach. This approach 
has the potential to enhance the accuracy of our estimations.

Fig. 7   Predicted vs observed root yield (t ha−1) for the 70 DAS model
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Conclusion

The potential of remote sensing for predicting carrot yield across multiple growing regions, 
seasons and at different growth stages was explored in this study. In the case of using a sin-
gle VI as a predictor, the OCW varied per region and per VI. In two regions, the OCW was 
close to harvest. Whilst this outcome offers some benefit for pre-harvest yield forecasting 
i.e. for forward selling and harvesting logistics (labor, storage, transport etc.) it is likely too 
late to assist growers with the implementation of remedial actions to maximize produc-
tion. For the first time in root crops, the methodology proposed in this study successfully 
reduced the capture gap by more than 60 days for some regions incorporating different 
RS-data and the region as input parameters. This alone greatly improves the potential of 
optical remote sensing for yield forecasting in growing regions and times of the year that 
are cloud dominated. This result offers immediate advantages in being able to narrow down 
the predictions of yields at the early time of 70 DAS. The fitted model presents a simple 
linear relationship between the regions, VIs, a multispectral band and yield. It is plausible 
that interactions exist between the predictors, which are yet to be explored. As more data 
becomes available, more complex models incorporating such interactions can be explored, 
which has the potential to improve the accuracy to predict yields at this stage of the grow-
ing season. The outcomes presented in this study are important to industry considering the 
subterranean growth habit of the carrot and the limited ability to derive an accurate pre-
harvest non- destructive prediction of yield.
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