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Abstract 

Background:  Long-read sequencing platforms offered by Oxford Nanopore Technologies (ONT) allow native DNA 
containing epigenetic modifications to be directly sequenced, but can be limited by lower per-base accuracies. A 
key step post-sequencing is basecalling, the process of converting raw electrical signals produced by the sequencing 
device into nucleotide sequences. This is challenging as current basecallers are primarily based on mixtures of model 
species for training. Here we utilise both ONT PromethION and higher accuracy PacBio Sequel II HiFi sequencing on 
two plants, Phebalium stellatum and Xanthorrhoea johnsonii, to train species-specific basecaller models with the aim of 
improving per-base accuracy. We investigate sequencing accuracies achieved by ONT basecallers and assess accuracy 
gains by training single-species and species-specific basecaller models. We also evaluate accuracy gains from ONT’s 
improved flowcells (R10.4, FLO-PRO112) and sequencing kits (SQK-LSK112). For the truth dataset for both model 
training and accuracy assessment, we developed highly accurate, contiguous diploid reference genomes with PacBio 
Sequel II HiFi reads.

Results:  Basecalling with ONT Guppy 5 and 6 super-accurate gave almost identical results, attaining read accuracies 
of 91.96% and 94.15%. Guppy’s plant-specific model gave highly mixed results, attaining read accuracies of 91.47% 
and 96.18%. Species-specific basecalling models improved read accuracy, attaining 93.24% and 95.16% read accura-
cies. R10.4 sequencing kits also improve sequencing accuracy, attaining read accuracies of 95.46% (super-accurate) 
and 96.87% (species-specific).

Conclusions:  The use of a single mixed-species basecaller model, such as ONT Guppy super-accurate, may be reduc-
ing the accuracy of nanopore sequencing, due to conflicting genome biology within the training dataset and study 
species. Training of single-species and genome-specific basecaller models improves read accuracy. Studies that aim to 
do large-scale long-read genotyping would primarily benefit from training their own basecalling models. Such studies 
could use sequencing accuracy gains and improving bioinformatics tools to improve study outcomes.

Keywords:  Oxford Nanopore Technologies, PacBio, Long-read sequencing, Basecaller training, Sequencing accuracy, 
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Background
Since releasing its first sequencing platform in 2012, 
Oxford Nanopore Technologies (ONT) has signifi-
cantly improved nanopore chemistry over six iterations 
(R6.0, R7.0, R7.3, R9, R9.4, and R10.4). Each new chem-
istry has improved elements of the speed of sequencing, 
yield, and accuracy [1]. Oxford Nanopore Technologies 
sequencing platforms (Flongle, MinION, GridION and 
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PromethION) measure the changes in the electrical 
ion current that occur as DNA moves through a nano-
pore contained within the flowcell array, which is stored 
within fast5 files [2, 3]. Basecallers convert this current 
signal to base pairs of DNA sequence (stored as fastq 
files) and have been extended to detect methylated bases 
[4]. Despite the improvements made to the sequencing 
chemistry and the accuracy at which individual pores’ 
electrical signal is measured, the per-base accuracy still 
lags behind alternative sequencing platforms [5]. While 
advances in per-base accuracy of nanopore sequencing 
have focused on the function and stability of pores and 
improved basecalling algorithms, an unexplored avenue 
for greater sequence accuracy could be in the creation of 
species-specific base calling models.

The signal captured during nanopore sequencing, 
often referred to as a squiggle, is difficult to convert to 
DNA bases and has relied on machine learning, which 
has enabled iterative advances. Early iterations of ONT 
basecalling software made use of hidden Markov models 
(HMM), followed by recurrent neural networks (RNN) 
before settling on connectionist temporal classifica-
tion (CTC) algorithms [6]. Each iteration of basecaller 
has improved the accuracy of basecalled reads, using in 
house training data, as reported by ONT [7]. However, 
real-world sequencing projects, while seeing significant 
improvements to basecalling accuracy, do not achieve the 
reported ONT accuracy [8, 9].

The leading basecalling models produced by ONT, 
which are included with the basecalling software Guppy 
(and built into MinKNOW), are trained on a mixture 
of both native and amplified DNA (gDNA, PCR ampli-
cons, cDNA), obtained from multiple organisms from all 
kingdoms of life, and viruses [10]. Using these nucleotide 
mixtures, a CTC model is iteratively trained until accu-
racy asymptotes. During basecalling, the CTC algorithm 
classifies discrete sections of the continuous raw signal as 
its most probable nucleotide [6]. The accuracy of ONT 
Guppy’s basecalling model potentially suffers a lack of 
accuracy due to conflicts within the different genome 
biologies of the training datasets. Produced alongside 
the basecalled sequence is a per-base quality score. These 
Phred encoded quality scores show the confidence that 
the trained CTC algorithm has in classifying a discrete 
section of signal (squiggle) as an A, T, C or G [8].

A particular issue to basecaller training is likely the 
differences in DNA methylation motifs and patterns 
between lineages, especially between domains [11–13]. 
These methylation differences will likely cause a loss of 
accuracy and/or certainty when classifying sequence 
signals [9]. We can analogise this loss of accuracy and/
or certainty to the influence of accents within speech 
recognition [14, 15] as seen, for example, when a speech 

recognition algorithm is trained on English speakers with 
a strong accent. The trained speech recognition model is 
then used to convert to text the speech of another indi-
vidual with a different accent. Both speak English, but as 
the pronouncement of syllables varies greatly between 
training and usage data, the speech recognition algo-
rithm may not produce the correct output.

Additionally, while the basecalling models included in 
ONT Guppy are trained on a diverse range of species, it 
is unlikely for a researcher that their species of interest 
(and its unique genome biology) formed part of the train-
ing dataset. Furthermore, as the species used by ONT 
to train its models are unknown it is impossible to know 
how different your genome of interest may be from the 
training data. Another consideration of training accuracy 
could include DNA extraction and processing protocols, 
and their impact on sequenced DNA.

We sought to assess if basecalling could be improved 
by using a single-species and genome-specific trained 
basecalling model by training basecalling models using 
R9.4.1 flowcells for both Phebalium stellatum (eudicot, 
Sapindales, Rutaceae; [16]) and Xanthorrhoea johnsonii 
(monocot, Asparagales, Asphodelaceae; [17]), and R10.4 
flowcells for P. stellatum, two Australian plants whose 
lineages diverged ~ 136 million years ago [18]. Addition-
ally, by reciprocally basecalling our two species’ ONT 
sequencing data (P. stellatum was basecalled with X. 
johnsonii’s model and X. johnsonii was basecalled with P. 
stellatum’s model), we sought to test whether the mixed 
nature of ONT’s basecalling models could be affecting 
basecalling accuracy.

Results
Assembly of the truth dataset (de novo genome 
assemblies)
We first filtered and assembled the PacBio Sequel II HiFi 
reads which served as our truth dataset for model train-
ing and basecaller accuracy analysis. By removing short 
(1 Kbp) and low-quality (Q < 23) HiFi reads, we observed 
a minimal ~ 2.8 × loss of coverage and a ~ 172.5 bp loss in 
N50 while raising the average read quality score by ~ 1.6, 
Additional file 1: Table S1 (pre-assembly filtering of HiFi 
reads was likely unnecessary and performed due to our 
high familiarity with ONT data). These filtered HiFi read 
libraries were assembled with HiFiAsm, and the result-
ing assemblies contained separate genomes for haplo-
type 1 and haplotype 2 (assembly statistics reported in 
Table 1). HiFiAsm also assembles an unphased genome (a 
more contiguous haplotype merged genome), but as this 
genome is not used during basecaller training or accu-
racy analysis we don’t report on its quality or contigu-
ity. Neither of the two species’ genomes assembled into 
full chromosomes, but rather chromosome fragments or 
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contigs, which is typical for genome assembly projects 
[19]. Both genome assemblies were in agreement with 
the reported approximations of genome sizes based on 
C-value calculations; [20]). Phebalium stellatum was our 
most contiguous assembly, having the higher N50 scores 
(haplotype 1 = 14.12 Mbp; haplotype 2 = 10.14 Mbp) and 
the longest contigs. Xanthorrhoea johnsonii also assem-
bled into a set of highly contiguous haplotypes with 
good N50 scores (haplotype 1 = 2.33  Mbp; haplotype 
2 = 2.22 Mbp) and very long contigs (Table 1).

After assembly, both haplotype 1 and haplotype 2 for 
each genome assembly were joined in a single fasta file 
(i.e., not collapsed or merged), creating a single pseudo-
diploid genome for P. stellatum and X. johnsonii. These 
pseudo-diploid genomes became our truth datasets and 
were used for both basecaller training and model accu-
racy analysis. To our knowledge, this is the first time 
diploid reference genomes have been used for training, 
which is key to separate allele variation among haplo-
types from sequencing errors. Without diploid resolution 
training cannot improve beyond the heterozygosity rate.

Basecaller training
As basecaller training is limited by available compute 
resources we began training by subdividing our fast5 
sequencing files into smaller datasets. Reads were divided 
into subsets that would finish basecalling within our 
maximum allowed job run time. For P. stellatum R9.4.1 
we created three equally sized read sets containing a 
total of 1,776,000 reads. Similarly, for P. stellatum R10.4 
we created three equally sized read sets containing a 
total of 1,944,674 reads, and for X. johnsonii we created 
two equally sized training with a total of 1,767,914 reads. 
Subdivision of reads was necessary due to the number of 
reads obtained for each of the plant species. However, 
this may not be necessary depending on the number of 
reads obtained for basecaller training (i.e., from a Min-
ION), or if compute resources aren’t limiting.

Each subset of reads for training were basecalled with 
ONT Bonito and subsequently, a basecaller model was 

trained. Basecalling subsets of reads resulted in the 
total generation of 449 Mbp of sequence for P. stellatum 
R9.4.1, 1,318 Mbp for P. stellatum R10.4, and 540 Mbp for 
X. johnsonii R9.4.1. For all datasets, we trained a model 
on a single subset of reads and iteratively refined this 
model with all other training read subsets. For all R9.4.1 
datasets we used the following parameters: epochs: 15, 
learning_rate: 0.0002, batch_size: 100, and num_chunks: 
0. Training P. stellatum R10.4 required a batch_size = 64, 
as reads were longer, all other parameters were the same 
as for R9.4.1 training. Complete species-specific base-
caller models were exported into a Guppy-compatible 
format and the configuration file for the bonito model 
dna_r10.3_450bps_sup was modified appropriately for 
each model. For details on job run times and memory 
usage, see Additional file 1: Table S2.

At the beginning of each epoch (training iteration), 
ONT Bonito reserves a collection of test reads for model 
evaluation. These test reads are basecalled after each 
epoch, then aligned to the truth dataset to assess the 
model accuracy. Plotting these accuracies demonstrate 
the models did improve and revealed when asymptotes 
were approached during training (Fig. 1). For both P. stel‑
latum R9.4.1 and X. johnsonii models, training peaked 
after 10 epochs. Phebalium stellatum R10.4 training 

Table 1  HiFi genome assembly statistics

Statistics describing the assembly (both haplotypes and combined haplotypes) contiguity for Phebalium stellatum and Xanthorrhoea johnsonii

Haplotype X. johnsonii P. stellatum

1 2 1 and 2 1 2 1 and 2

Genome size (Mbp) 1443.23 1436.42 2879.65 654.91 593.36 1248.27

N50 (Mbp) 2.33 2.22 2.25 14.12 10.14 12.51

Contig count 1940 1599 3539 1323 341 1664

Longest contig (Mbp) 21.45 29.62 29.62 39.44 28.58 39.44

Shortest contig (Kbp) 16.31 21.27 16.31 14.57 10.18 10.18

Fig. 1  Bonito reported model accuracy during basecaller training. 
Red dots indicate when training on the next read subset commenced
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peaked at 15 epochs. All models were improved by train-
ing on additional subsets of reads. The models used for 
the remainder of this study were trained with 15 epochs 
on each subset of reads.

R9.4.1 model quality and accuracy
Having trained a species-specific basecaller model for 
each of the two study plants using our R9.4.1 reads, we 
next sought to evaluate the improvements in basecalling 
accuracy. Basecalling of fast5 sequences was performed 
with multiple versions and models of ONT Guppy for 
each plant; version: 5.0.7 using the super-accurate model, 
version: 6.0.2 using the super-accurate model, version: 
6.1.2 using the only available ONT plant model, and ver-
sion: 6.0.2 and using both of our species-specific plant 
models. This included basecalling each plant with the 
relevant species-specific model but also the model for 
the other plant, i.e., P. stellatum reads were basecalled 

with the X. johnsonii model and X. johnsonii reads were 
basecalled with the P. stellatum model. These basecalled 
datasets will be referred to as Guppy-5, Guppy-6, Guppy-
6-plant, P. stellatum and X. johnsonii, respectively. For 
all basecalled datasets, we calculated the average qual-
ity score per-read and average read identity compared to 
the truth dataset (diploid HiFiAsm genome), which are 
presented in Table 2 and Fig. 2. Each basecalled dataset 
contained all reads, no filtering was performed. The dis-
tributions of quality scores are presented in Fig. 3. Qual-
ity score distributions and statistics are also displayed as 
Phred scores, in Additional file 1: Fig. S1 and Table S3.

The species-specific models were found to have a nota-
ble increase in accuracy compared to both the ONT 
Guppy-5 and Guppy-6 models, which were nearly iden-
tical. Compared to the Guppy-6 model, our species-
specific models increased average read quality scores 
by 8.15% for P. stellatum (86.68–94.83%) and 5.12% 

Table 2  Summary of quality statistics for the R9.4.1 basecalled datasets, in percentages

Average read quality scores and read identity for all Phebalium stellatum (R9.4.1) and Xanthorrhoea johnsonii basecalled datasets. Average read quality scores were 
calculated per-read, and the overall average calculated. Read identity is calculated per-read against the HiFi genome and averaged. Averages are shown with standard 
deviations. For reciprocal species-specific models, P. stellatum reads were basecalled with the X. johnsonii model and X. johnsonii reads were basecalled with the P. 
stellatum model. R2 values show the correlation between average read quality score and read identity, calculated by linear regression

Basecaller model P. stellatum (R9.4.1) X. johnsonii

Quality score Read identity R2 Quality score Read identity R2

Guppy 5 super accurate 86.35%  ± 45.92% 91.96%  ± 3.83% 0.777 90.16%  ± 48.12% 94.15%  ± 3.12% 0.801

Guppy 6 super accurate 86.68%  ± 46.75% 91.96%  ± 3.83% 0.777 90.47%  ± 48.75% 94.15%  ± 3.12% 0.801

Guppy 6 super accurate—plant 84.73%  ± 50.92% 91.47% ± 3.50% 0.850 92.81%  ± 54.60% 96.18% ± 3.50% 0.900

Reciprocal species-specific 93.00%  ± 50.83% 92.98%  ± 3.16% 0.577 95.55%  ± 45.02% 94.43%  ± 2.69% 0.787

Species-specific 94.83%  ± 47.35% 93.24%  ± 3.00% 0.648 95.59%  ± 48.46% 95.16%  ± 2.74% 0.805

Fig. 2  Distribution of R9.4.1 reads accuracies from each basecalled dataset (in percentages). Left figure shows the distribution of all R9.4.1 
Phebalium stellatum basecalled dataset accuracies compared to the pseudo-haploid HiFi genome (truth set). Right figure shows the distribution of 
all R9.4.1 Xanthorrhoea johnsonii read dataset accuracies compared to the pseudo-haploid HiFi genome (truth set)
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for X. johnsonii (90.47–95.59%). This improvement for 
X. johnsonii resulted in the highest average read qual-
ity observed in these datasets, which was 95.59%. These 
quality score improvements held true when compared 
to the PacBio HiFi genome reference (truth set), as we 
also observed increased average read identities of 1.28% 
for P. stellatum and 1.01% for X. johnsonii. Interestingly, 
basecalling X. johnsonii with the P. stellatum model gave 
near equal improvements in average read quality score 
and read identity as basecalling with the species-specific 
model for X. johnsonii. This observation was not sym-
metrical, as basecalling P. stellatum with the X. johnsonii 
model produced results of lesser quality than the species-
specific model. Basecalling our plants with the Guppy-6-
plant model, the only publicly available plant model, gave 
mixed results. Firstly, as seen in Fig. 2, a large portion of 
reads appeared to have the highest read qualities, but also 
a large portion appeared to have the worst read quality 
scores, in particular for P. stellatum. This model did pro-
duce the highest average read identity observed, 96.18% 
for X. johnsonii (compared to 95.59% with the species-
specific model), but also the worst read identity observed 
out of all the models tested, 91.47% for P. stellatum (com-
pared to 93.24% for the species-specific model). This 
may reflect the origin of Guppy-6-plant training data, 
for instance, Guppy-6-plant may have been trained on a 
monocot species and not eudicot. However, the Guppy-
6-plant model, like our species-specific models, demon-
strated the value of further developing plant basecalling 
models.

Using linear regression we determined the correlation 
of average read quality score to average read identity, 

Table 2. None of the basecaller model average read qual-
ity scores, including our species-specific models, were 
found to be highly correlated with average read identity. 
Guppy-6-plant had the highest correlation (P. stellatum 
R2 = 0.850; X. johnsonii R2 = 0.900) and when we applied 
the species-specific models to the other plant (P. steal‑
lum to X. johnsonii and the reverse) the lowest (P. stella‑
tum sequencing data R2 = 0.577; X. johnsonii sequencing 
data = 0.787). Interestingly, all X. johnsonii read datasets 
were more highly correlated with read identity than each 
equivalent P. stellatum dataset. For regression scatter 
plots see Additional file 1: Figs. S2 and S3; and for phred 
scores see Additional file 1: Figs. S4 and S5.

Lastly, we investigated the average read lengths for 
each basecalled dataset (Table 3 and Additional file 1: Fig. 
S6). Interestingly, we found that the datasets generated 
with Guppy-5, Guppy-6 and Guppy-6-plant models had 
considerably longer reads than our species-specific mod-
els (P. stellatum N50: ~ 46 Kbp compared to ~ 42 Kbp; X. 
johnsonii N50: ~ 40 Kbp compared to ~ 38 Kbp). A poten-
tial explanation for these models having the longest reads 
but also the lowest quality in many instances, could be 
due to the error profile of ONT sequencing resulting in 
the erroneous insertion of indels, and therefore lower 
quality reads are expected to be longer in length.

R10.4.1 model quality and accuracy
In addition to ONT sequencing with standard SQK-
LSK110 ligation kits and R9.4.1 flow cells, we performed 
sequencing for P. stellatum with the newer ONT chem-
istry marketed as Q20+ sequencing (99%), using SQK-
LSK112 ligation kits and R10.4 flow cells (containing E8.1 

Fig. 3  Distribution of R9.4.1 read quality scores, in percentages. Left figure shows the distribution of all R9.4.1 Phebalium stellatum read library 
average read quality scores as reported by guppy. Right figure shows the distribution of all R9.4.1 Xanthorrhoea johnsonii read library average read 
quality scores as reported by guppy
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pores). We trained an additional P. stellatum model for 
this new sequencing dataset and assessed any potential 
accuracy gains made.

After training the new P. stellatum R10.4 species-spe-
cific model, we performed basecalling, calculated average 
read quality scores and average read identity compared 
to the truth dataset (Fig.  4 and Table  4). Basecalling of 
R10.4 sequencing data was performed with ONT Guppy 
version 6.0.6 super-accurate and also basecalled with our 
trained species-specific P. stellatum R10.4 model. These 

models will be referred to as Guppy-6-R10.4 and P. stel‑
latum R10.4, respectively. Same as our previous analy-
ses, we included all basecalled reads in the analysis (no 
filtering performed), and quality score distributions and 
statistics are also displayed as Phred scores, in Additional 
file 1: Fig. S7 and Table S4.

Our species-specific P. stellatum R10.4 model outper-
formed our previous species-specific model for P. stel‑
latum (R9.4.1), increasing average read quality scores by 
1.90% and increasing average read identities by 3.63%. 

Table 3  Read lengths of R9.4.1 datasets

Average and N50 read lengths for each dataset. Averages are shown with standard deviations. Reciprocal species-specific are datasets where Phebalium stellatums 
reads were basecalled with the X. johnsonii model and Xanthorrhoea johnsoniis reads were basecalled with the P. stellatum model

Basecaller model P. stellatum (R9.4.1) X. johnsonii

Average (Kbp) N50 (Kbp) Average (Kbp) N50 (Kbp)

Guppy 5 super accurate 28.98 ± 24.87 45.89 25.49 ± 21.91 39.57

Guppy 6 super accurate 28.99 ± 24.87 45.89 25.49 ± 21.91 39.57

Guppy 6 super accurate—plant 26.15 ± 24.47 45.39 23.48 ± 21.81 39.52

Reciprocal species-specific 26.02 ± 22.80 41.40 24.71 ± 21.10 38.19

Species-specific 26.76 ± 23.07 42.28 24.81 ± 21.26 38.42

Fig. 4  Distribution of R10.4 sequencing quality statistics, in percentages. Left figure shows the distribution of average read quality scores (obtained 
from basecalled fastq files) for Phebalium stellatum basecalled datasets. B Distribution of read identities (compared to the PacBio HiFi genome (truth 
set)) for all P. stellatum basecalled datasets

Table 4  R10.4 Summary of basecalling quality statistics, in percentages

Average read quality scores and read identity for all Phebalium stellatum R10.4 read libraries. Average read quality scores were calculated per-read, and the overall 
average calculated. Read identity is calculated per-read against the HiFi genome and averaged

Basecaller model Quality score Read identity Read N50 (Kbp) Average read length 
(Kbp)

R2

Guppy-6-R10.4 90.00%  ± 4.72% 95.46%  ± 5.05% 39.19 22.97  ± 22.39 0.745

Species-specific R10.4 96.73%  ± 67.96 96.87%  ± 3.26% 37.24 20.19  ± 21.36 0.893
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Using this model, we achieved our highest accuracy met-
rics observed in our plants, with an average read quality 
score of 96.73% and average read identities of 96.87%. We 
also observed that Guppy-6-R10 outperformed the pre-
vious Guppy-6 analyses on both quality metrics, having 
both a higher average read quality score (+ 3.32%) and 
higher average read percent identity (+ 3.50%).

Using linear regression we calculated the correlation of 
average read quality score to average read identity, pre-
sented in Table 4 (for regression scatter plots see Addi-
tional file 1: Figs. S8 and S9). While the species-specific 
P. stellatum R10.4 model average read quality scores 
were found to be more correlated with read identity 
than Guppy-6-R10, neither of the models was highly 
correlated with average read identity. This suggests that 
predicted read qualities are not sufficient indications of 
actual read identities.

Lastly, we performed basecalling of the R10.4 sequenc-
ing data with Guppy version 6.0.6 super-accurate duplex, 
where the first strand template and the second strand 
complement is collapsed into potentially higher quality 
reads. After examination of the quality of duplex reads, 
unfortunately, < 6% of reads were duplex and did not 
align to the genome. These were not further considered 
and reflect the early stages of this technology (see Addi-
tional file 1: Additional Results).

Discussion
Oxford Nanopore’s long-read sequencing has become a 
valuable tool to the research community [21–24], due to 
the flexible format of the sequencing, length of reads, low 
cost, and comparable ability to assemble genomes [25]. 
There have been ongoing improvements to the accuracy 
of ONT sequencing, particularly for humans and bacte-
rial genomes; however, improvements in plant basecall-
ing have been limited. Here we trained two R9.4.1 plant 
species-specific basecaller models and one additional for 
R10.4 flow cells, attempting to raise the accuracy of ONT 
read libraries and examine any accuracy improvements 
gained. Additionally, analysis of our basecalling results 
was performed to investigate if ONT’s practice of releas-
ing a single basecalling model is appropriate, based on 
an unknown suite of organisms used for model training. 
The single basecalling model is provided by ONT for use 
in all species within all kingdoms, potentially confound-
ing the unique genome biology (especially high level of 
methylation in native plant DNA) of studied organisms 
and producing basecalled sequence of lower quality than 
could be achieved with a single-species or lineage specific 
model [9].

Analysis of both our R9.4.1 and R10.4 species-specific 
basecalling models demonstrates that basecalling ONT 
with these models improves read accuracy. Additionally, 

a comparison of equivalent R9.4.1 to R10.4 sequencing 
datasets (Guppy super-accurate to Guppy super-accu-
rate) demonstrates that sequencing with version 12 
chemistry and R10.4 flow cells are of superior accuracy 
to those of R9.4.1. The highest read accuracies were 
achieved by sequencing with the R10.4 kit and basecall-
ing with the species-specific model. Helping to confirm 
our increased read accuracy, we also observed a slight 
reduction in average read length, likely resulting from 
a reduction in indel errors within our reads. Although 
sequencing with this new chemistry and R10.4 flow cells 
has a lower output, we believe this is an advantageous 
pursuit and hypothesise that highly accurate long-reads 
will be more beneficial to most genomic research appli-
cations than higher output of low accuracy reads. For 
example, large scale pan-genome studies may be able to 
reduce coverage if using high-accuracy species-specific 
basecalled R10.4 reads [26].

While both our study species originate within Aus-
tralia, they are separated by ~ 136 million years of evo-
lution, since the divergence of the monocot and eudicot 
lineages [18]. Due to the age of the lineage divergence, 
it is expected that the genomes of these two highly dif-
ferent species would contain different genome biology. 
Despite these expected genomic differences, when using 
a species-specific plant model to cross basecall a different 
plant, the resulting basecalled dataset achieved higher 
accuracy than that of the Guppy super-accurate model. 
This demonstrated the importance of developing plant 
models, which perform better than mixed models pri-
marily based on non plant organisms.

With Guppy version 6.1.2, ONT introduced a plant-
specific basecaller model. Examination of this model 
gave mixed results, P. stellatum basecalled reads were of 
low-quality, while X. johnsonii basecalled reads were of 
high-quality. The different results obtained by our two 
species are likely due to their evolutionary distances to 
the plant model training species, and differences between 
their abundance and diversity of their DNA methylation. 
Currently, the training species that ONT use are not well 
documented; however, the plant basecaller model does 
include maize within its training dataset [27]. The inclu-
sion of maize likely explains X. johnsonii’s read accuracy 
outperforming P. stellatum when basecalled with the 
plant model. Xanthorrhoea johnsonii’s unique genome 
biology more closely resembles maize (both are mono-
cots) than does P. stellatum’s.

With the introduction of the newer chemistries and 
flow cells, ONT has enabled the generation of higher 
accuracy duplex reads. However, analysis of P. stellatum 
duplex reads was not possible, as the majority of reads 
failed to align to the P. stellatum PacBio HiFi genome. 
The cause of alignment failure is currently unknown. 
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During construction of duplex reads, template and com-
plement strands appeared to have been correctly iden-
tified and collapsed. As more data becomes available, 
efforts to examine duplex reads will continue.

In our study, read quality scores for all the basecalling 
models tested were found to be a poor indicator of read 
accuracy. This observation has implications concern-
ing quality assessment and filtering of read libraries with 
quality scores. Before using read libraries, researchers 
typically quality screen reads with read per-base qual-
ity scores, the only quality metric available. Decisions 
on read trimming and filtering are made based solely on 
read quality scores, which, if basecalled using a model 
trained on mixed data may result in the unnecessary 
removal of accurate reads (Table 4 and Additional file 1: 
Table S3). Loss of usable high-quality reads could impact 
downstream analysis and study feasibility, and will likely 
increase cost.

The method we used to train our basecaller model used 
both HiFi (PacBio) and PromethION (ONT) sequenc-
ing data. As such a dataset comes at a large cost, many 
projects may not be able to justify such a study. However, 
as the truth dataset needs to be highly accurate, contigu-
ous, and haplotype resolved, assembling a HiFi genome 
currently provides the best truth dataset. The per-base 
accuracy and haplotype resolution of an ONT assembled 
genome will not be adequate to use as a truth dataset. Of 
particular note is the requirement to include both homol-
ogous sets of chromosomes within the truth dataset, 
ensuring that the identity of all reads can be established. 
To obtain the best results from basecaller training, a HiFi 
genome should be used as the truth dataset, and ONT 
reads for basecalling. However, it might not be realistic 
to spend such an investment in HiFi sequencing to obtain 
a truth dataset. Our results show that this truth dataset 
doesn’t need to be from the same species, or even the 
same lineage, to obtain improved basecalling accuracy. 
Indeed, for basecalling an angiosperm, a model trained 
on any flowering plant would likely provide an improve-
ment over the default super-accurate model, though phy-
logenetically closer species would be preferable. As more 
both HiFi and ONT sequence data are accumulated for 
more species, this question may be addressed with fur-
ther resolution.

Conclusions
The development of species-specific basecalling models 
can have a substantial impact in improving the accuracy 
of long-read sequencing. This improved accuracy has the 
potential to be beneficial to many research questions and 
genomic applications. Landscape-scale studies, metabar-
coding studies or those examining the genetics of large 
groups would be the ideal candidate studies to investigate 

the value add and impact of species-specific basecaller 
training. Such studies, with improved long-read sequenc-
ing accuracies, could make use of new bioinformatics 
tools to better variant call both point mutations (SNPs) 
and structural variations (SV) e.g., Longshot [28], medaka 
[29], NanoCaller [30], and pepper [31]. To date, ONT has 
focused on a single mixed-species basecalling model that, 
due to conflicting genome biology, may reduce the results 
of basecalling. We recommend that long-read providers 
and genomic researchers investigate the appropriateness 
of having several lineage-specific basecalling models. 
For example, a model trained for each domain, king-
dom, or phylum or even family and genus. Alternatively, 
the research community could begin building and shar-
ing species- or lineage-specific basecaller models, as we 
have done with this study. Basecaller model sharing could 
be done similarly to how other sequence resources are 
shared, benefiting the entire genomic community.

Methods
DNA extraction and sequencing
Tissue collection
Both Phebalium stellatum and Xanthorrhoea johnsonii 
are Australian plants growing at the Australian National 
Botanic Gardens, Canberra, Australia. Living collections 
accession numbers CANB 914043 (section np1) and 
CBG 8311086.1 (section  15F) respectively. Phebalium 
stellatum has been vouchered at the N.C.W. Beadle Her-
barium, UNE, Armidale, Australia; voucher herbarium 
catalogue number NE 109286. Xanthorrhoea johnsonii 
has been vouchered at the Australian National Herbar-
ium, Canberra, Australia; voucher herbarium catalogue 
number CBG 8900857. Leaf tissue was collected and 
stored at − 80 °C until DNA extraction.

High‑molecular weight DNA extraction for long‑read 
sequencing
High-molecular weight DNA was extracted with a mag-
netic bead-based protocol which is described in [32]. In 
brief, leaf material was ground with a mortar and pestle 
under liquid nitrogen, homogenate was washed with a 
sorbitol buffer, an SDS buffer lysis buffer was used fol-
lowed by protein precipitation with potassium acetate, 
then DNA was bound to magnetic beads for further 
washing with ethanol before elution.

Long‑read native DNA sequencing with  Oxford Nanop‑
ore Technologies  High-molecular weight DNA was size 
selected for fragments ≥ 20  kb using a PippinHT (Sage 
Science). An Oxford Nanopore Technologies native DNA 
sequencing library was constructed according to the man-
ufacturer’s protocol ‘Genomic DNA by Ligation (SQK-
LSK110)’. Sequencing was performed on an ONT Prome-
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thION using a FLO-PRO002 R9.4.1 flow cell. Additionally, 
ONT Q20+ sequencing was done with P. stellatum using 
the new ligation kit ‘Genomic DNA by ligation using the 
Q20+ Kit (SQK-Q20EA)’, now renamed SQK-LSK112, 
on the PromethION using a FLO-PRO112 R10.4 flow 
cell. When sequencing declined (low active pore count, 
approximately 24 h), the flow cell was treated with DNAse 
I, primed again and more library was loaded, according to 
the manufacturer’s ‘Flow Cell Wash Kit (EXP-WSH004)’. 
This was performed at least twice to maximise total 
sequencing output of the flow cell, until the flow cell was 
expended.

Single molecule, real‑time (SMRT) sequencing with Pacific 
Biosciences
High-molecular weight DNA was sheared to approxi-
mately 18  kb fragments with a Megaruptor 3 (Diagen-
ode), using cycle 1 at 31× speed and cycle 2 at 32× 
speed. The DNA was then subjected to a 0.5× reaction 
of NEBNext FFPE DNA Repair Mix (New England Bio-
Labs M6630) for 10 min at room temperature and then 
size selected for fragments ≥ 15  kb with a BluePippin 
(Sage Science). A PacBio SMRTbell library was prepared 
according to the manufacturer’s ‘SMRTbell Express Tem-
plate Prep Kit 2.0′ (Pacific Biosciences). Sequencing was 
performed on a PacBio Sequel II using an 8 M SMRT cell, 
with the circular consensus sequencing (CCS) mode to 
generate high-accuracy HiFi reads.

Species‑specific basecaller model training
Basecaller training requires a truth dataset to train 
and assess model accuracy. The truth dataset is ide-
ally a highly accurate, haplotype-resolved and complete 
genome sequenced from the same sample used for train-
ing. Using separate parental chromosomes for training 
allows the sequencing error rate to become lower than 
the heterozygosity threshold, and is essential for base-
caller training of highly heterozygous (2–5%) wild spe-
cies. While the availability of a high-quality genome for 
training is not possible for every project or organism, we 
generated one for each of our study species here to ena-
ble benchmarking of the methodology.

Our truth dataset was created by assembling high-
accuracy HiFi reads with HiFiAsm (default parameters; 
version: 0.16.1-r375; [33]). Pre-assembly, we filtered our 
reads, removing all reads < 1 Kbp in length and < q23 
(< 99.5% accurate). HiFiAsm assembles three genomes, 
haplotype 1, haplotype 2, and unphased [33]. Haplotypes 
1 and 2 were placed into a single fasta file, creating a hap-
loid genome for our truth dataset.

Basecaller training began by subdividing our fast5 
sequence files into smaller training datasets to suit our 

computing environment. Training data subdivision may 
not be needed if sequenced on a MinION. Basecaller 
training is performed by Bonito (versions: P. stellatum 
R9.4.1: 0.4.0; X. johnsonii R9.4.1: 0.4.0; P. stellatum 
R10.4: 0.5.3; [34]), an ONT provided CTC basecaller 
trainer. Basecaller training began by basecalling fast5 
subdivisions with Bonito, using the appropriate base-
called model (dna_r9.4.1 and dna_r10.4_e8.1_hac@
v3.4), and the parameters -save-ctc and -reference. 
Basecalling is performed to identify the true sequence 
of each read by alignment to the truth dataset (HiFi 
genome). Next, our species-specific models are trained 
with Bonito. Parameters for Bonito model training are 
specific to your computing environment. In particu-
lar, batch_size and num_chunks are used to specify 
the number of training reads and length to split your 
reads into, respectively. These two parameters specify 
the amount of data used during training and are lim-
ited by GPU memory size. Epochs (learning iterations) 
and learning_rate (step size) can also be tuned based 
on compute time restrictions. A smaller learning_rate 
and more epochs can achieve better results but require 
more computing time. Bonito’s pretrained parameter 
was used to train subdivided sequences. Using pre-
trained, the model trained in the previous training run 
will become the input for the next run.

As we used Guppy to basecall fast5 files, we 
exported a Guppy-compatible model of our species-
specific basecaller models. In addition to a JSON file, 
Guppy models also require a config file. Bonito’s dna_
r10.3_450bps_sup.cfg file was modified, renamed, and 
placed within Guppy’s data directory for use.

Assessment of basecaller model quality
Having basecalled our fast5 files, we next assessed the 
quality and accuracy of the resulting basecalled reads. 
Two methods were used to assess the accuracy of our 
models and determine if they could outperform the 
Guppy models. First, the internal basecalling quality 
was assessed by average read quality scores. Using Nan-
oPlot (version 1.1.0; [35]) read statistics were compiled, 
allowing us to compare read lengths, average quality 
scores, and total output between different basecaller 
models. Secondly, we assessed actual read accuracy 
by comparing reads to the HiFi “truth” diploid refer-
ence dataset. Basecalled reads are aligned to our truth 
dataset with minimap2 (version: 2.22; parameters: -ax 
map-ont; [36]) and using Promixio [37] read identity 
(percent similarity) calculated for all reads. We report 
quality scores as both percent and as Phred scores for 
comparison on a log scale.
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