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Abstract

- Christopher F. Sharpley' - Vicki Bitsika' - Linda Agnew?>

Autism spectrum disorder (ASD) is a neurodevelopmental condition that includes social-communication deficits and repeti-
tive and stereotypical behaviours (APA 2022). Neurobiological methods of studying ASD are a promising methodology for
identifying ASD biomarkers. Mu rhythms (Mu) have the potential to shed light on the socialisation deficits that characterise
ASD; however, Mu/ASD studies thus far have yielded inconsistent results. This review examines the existing Mu/ASD studies
to determine where this variability lies to elucidate potential factors that can be addressed in future studies.
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Introduction
Autism Spectrum Disorder: What We Know

Autism spectrum disorder (ASD) is a neurodevelopmental
condition affecting 1.0 to 2.9% of the population (Australian
Bureau of Statistics 2014; Baio et al., 2018; Fombonne, 2018).
It is characterised by persistent deficits in social communica-
tion and reciprocal social interaction, as well as the presence of
rigid and repetitive behaviours, interests, and activities (Ameri-
can Psychiatric Association 2022). These characteristics have
marked effects upon daily functioning and are associated with
substantial costs over the lifetime to the autistic individual, their
family unit, and the national economy (Horlin et al. 2014).
ASD is understood to have neurobiological underpinnings
(Ecker, 2017; Petinou & Minaidou, 2017). Consequently, neu-
robiomarkers for the core symptoms are relevant for inves-
tigation (Jones & Lord, 2013). A cross-section of existing
ASD neurobiomarkers includes significantly larger cerebral,
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cerebellar, frontal and temporal lobe, amygdala, and bilat-
eral hippocampus volume (Courchesne et al., 2007, 2011),
hyper-activation in both the right inferior frontal gyrus and the
bilateral temporal regions (Wang et al., 2006), and aberrant
event-related potential pathways to auditory and visual stimuli
(Courchesne et al., 1985; Ferri et al., 2003).

Mu: What We Know

Mu refers to phasic electrophysiological signals that are named
after their distinctively pointed negative peaks resembling the
Greek letter u (Mu) (Kropotov, 2009; Pineda, 2005). These
rhythms are mostly identified in the alpha frequency band
(i.e., from 8 to 13 Hz) and emanate from the sensory-motor
cortex (Kropotov, 2009). To transform the Mu signal from a
time-domain (when recorded by an EEG) to a frequency/power
domain, a fast Fourier transformation (FFT) is commonly
used, creating a number representative of Mu power (MP)
(Pineda, 2005). Partial or full disappearance of MP (called ‘Mu
desynchronisation’ (MD)) has been shown to occur in partici-
pants when physical movements are observed (Pineda, 2005),
imagined (Gastaut & Bert, 1954), or made (Gastaut, 1952).
Although Mu is independently generated in both the left and
right hemispheres of the brain and can be bilaterally incoher-
ent, the rthythms produced from the right and left hemispheres
generally mirror one another (van Leeuwen et al., 1978).

In humans, Mu activity varies according to age, movement,
handedness, sex, and attentional and affective state (e.g., Mar-
shall & Meltzoff, 2011; Oberman et al., 2005; Pfurtscheller
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et al., 2000; Pineda, 2005; Stancak & Pfurtscheller, 1996). The
summary outcomes from previous research on the effects of
each of these variables in typically developing (TD) individu-
als are briefly reviewed below in Table 1 to provide a basis for
comparison of data from Mu/ASD studies.

Due to its location over the sensorimotor cortex, most
Mu research has focussed on its relation to motor activity
(Pineda, 2005). However, more reports have emerged linking
Mu to spatial attention and movement observation, indicat-
ing Mu is associated with multiple brain regions (Hobson
& Bishop, 2017a). In a simultaneous fMRI and EEG, Yin
et al., (2016) found MP to be negatively associated with neu-
ral firing in the sensorimotor network, the attention control
network, and the mirror neuron system (MNS) and posi-
tively associated with neural firing in the salience network,
including anterior cingulate cortex and anterior insula. MP
is considered an idling state of the MNS, with higher power
(or more synchronisation) when at rest (Pineda, 2005) and
lower power (or desynchronisation) when activity increases

in that region and neurons begin to fire. As the MNS has
been identified as being a physiological correlate for Mu,
this has been researched in autistic individuals.

Mu in Autistic Individuals

Mu rhythms (Mu) have the potential to shed light on the elec-
trophysiological anomalies occurring in autistic individuals,
particularly in relation to the core deficit of social commu-
nication and reciprocal social interaction. This is because of
Mu’s overlap in functionality and topography with the mirror
neuron system (MNS), which has been implicated in social
functioning (Pineda, 2005). However, Mu studies in autistic
individuals (Mu/ASD studies) conducted to date demonstrate
some theoretical and methodological limitations and have
yielded mixed results, arguing for consideration as to why
such variability exists and what further research needs to be
conducted to clarify the association between ASD and Mu.

Table 1 A summary of influential Mu findings from research in typically developing individuals

Factor Impact on Mu

Reference(s)

Age The frequency of Mu in infancy and childhood increased accord-

Hagne, (1968); Stroganova et al., (1999)

ing to the developmental trajectory of motor and locomotor

skills

MD occurred under some conditions and not others during
infancy and early childhood. At 8-9 months, MD occurred when
watching object manipulation but not watching imitation. This

Lepage & Théoret, (2006); Marshall & Meltzoff, (2011);
Meyer et al., (2011); Nystrom et al., (2011); Stapel et al.,
(2010);

changed at 14—16 months where MD occurred when watch-

ing object manipulation and imitation. At 36 months, children
showed stronger MD in an interactive situation (i.e., engaged in
joint action play) versus a non-interactive situation (not engaged

in joint action play)

MD was more likely to occur in adults than in children

Movement
ment

In elite gymnasts, Mu did not desynchronise to viewing well-

versed movements (e.g., gymnastics)

Handedness

MD occurred when imagining, observing, and actioning move-

Right-handed persons showed more contralateral MD when mov-

Pineda, (2005)
Gastaut & Bert, (1954); Oberman & Ramachandran, (2007)

Babiloni et al., (2009)

Stancak & Pfurtscheller, (1996)

ing their hands (e.g., when moving a finger on their left hand,
more MD was detected from the right hemisphere at site C4).
Left-handed persons displayed equal MD activity on both sides

of the brain at sites C3 and C4 during hand movements
Sex Females displayed significantly stronger MD to hand movements

than males

More empathic females showed more MD than less empathic

females. This effect was not found in males

Attention

Cheng et al., (2008); Yang et al., (2009)

Cheng et al., (2008)

MD increased as more attention was required from a visual stimu- Chatrian et al., (1959); Hobson & Bishop, (2017a, 2017b)

lus (i.e., a person moving on a screen) and mentally conceptual-

ising increasingly complex movements

Affective state

‘Happy’ participants showed a greater amount of MD in response

Negative moods (e.g., disgust) resulted in significantly less MD
than positive moods (e.g., happy) or neutral expressions

Liet al., (2017); Moore et al., (2012)

Olfson, (2014)

to positive stimuli (i.e., a smiling face) than ‘unhappy’ partici-

pants who were shown sad faces
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Mu/ASD research began after the discovery of the MNS
due to a regional and functional overlap between MD and
the firing of mirror neurons (MN) (Rizzolatti & Craighero,
2004). When MN fired in synchrony, large band oscillations
in Mu were produced, and these oscillations were desynchro-
nised when movement was initiated (Pineda, 2005). Both
MD and MN activation (measured by fMRI over the premo-
tor cortex) have been shown to occur during (1) the execu-
tion (Pineda, 2005), perception (Martineau et al., 2008), and/
or imagination of movement (Francuz & Zapata, 2011); (2)
empathic understanding and perspective taking (Woodruff
et al., 2011; Yang et al., 2009); and (3) imitative learning
from language to tool use (Proverbio, 2012; Vukovic &
Shtyrov, 2014). As autistic individuals often experience
difficulties in empathic understanding, perspective-taking,
and imitative learning (Oberman et al., 2007), unusual pat-
terns of Mu have been investigated as potential biomarkers
for ASD-related impairments. Studies investigating MD in
autistic individuals have not produced consistent results, and
research in this field has not previously been reviewed for
a critical analysis of the consistency and validity of those
results in order to clarify where the state of research is in
this field and what needs to be done to provide a complete
understanding of the Mu/ASD association. Therefore, the
primary aim of this review is to critically analyse the previ-
ous Mu/ASD literature to determine where this variability
lies and to make suggestions for reducing this variability in
future studies.

Methods

To identify the existing Mu/ASD research, a search was
conducted within the PubMed, Web of Science, PsycINFO,
and Proquest databases, using the descriptors “Autism”,
“Mu”, “Mu Rhythm”, “ASD”, “socialisation/socialization”,
and “social” from the years 2005 (when the first Mu/ASD
hypothesis was proposed) to 2022.

Results

A total of 14 peer-reviewed research papers incorporating an
experimental paradigm were identified that met the search
criteria. Table 2 provides a summary of each of these 14
papers.

Study Findings of Mu in Autistic Individuals

Table 2 shows the findings concerning Mu dysfunction in
autistic individuals are mixed, with eight studies reporting
differences between ASD and TD groups and four studies
challenging these differences. Of the studies that did find

significant differences in MD between ASD and TD par-
ticipants, some methodological constraints have limited the
generalisability of the results (Hobson & Bishop, 2017a).
TD individuals desynchronise Mu under observing and/or
actioning movement, so the two primary conditions included
in most Mu/ASD studies were observation (e.g., observing a
video of a hand performing an action) and action/imitation
(e.g., copying that action). By comparing the MD in these
conditions, the hypothesis that autistic individuals would fail
to desynchronise Mu in the observation condition was tested.
This hypothesis arose because social impairments (such as
imitative ability (Pineda et al. 2008)), difficulty understand-
ing others’ intentions (Iacoboni et al., 2005), and limitations
in meaningful, goal-directed actions, that are observed in
autistic individuals all must begin with focussed observation
(Bernier et al., 2007; Buccino et al., 2004). Other studies
included additional conditions (e.g., familiarity, genetic pro-
filing, and face and body imitation measures prior to EEG
measurement) to these two primary conditions because of
earlier research that showed that these factors accounted for
a proportion of the variance in MD in TD individuals (i.e.,
Oberman et al., 2008, 2013) The failure of autistic individu-
als to show MD in the observation condition was a common
finding across eight of the studies (i.e., Bernier et al., 2007,
Dumas et al., 2014; Hudac et al., 2015, 2017; Oberman
et al., 2005, 2008, 2013), suggesting that the dysfunction
of Mu occurred primarily when observing a social stimu-
lus. However, in Dumas et al.’s (2014) study, observation
condition Mu dysfunction for autistic individuals was found
in the upper Mu frequency band of 10-13 Hz, but not the
lower Mu band of 8-10 Hz (Dumas et al., 2014). Hudac
et al. (2017) also investigated Mu in the upper (10-12 Hz)
and lower bands (8-10 Hz), to create phenotypic profiles
of ASD using MD attenuation and genetic profiling. The
authors recruited autistic individuals with likely gene-dis-
rupting mutations (LGDMs) and without LGDMs and then
measured MD, finding those with LDGMs had more stable
MD than autistic individuals without LGDMs. The con-
cept of using MD attenuation as a phenotype for addressing
some of the genetic heterogeneity in ASD was also applied
in Hudac et al.’s (2015) study. This study compared MD in
response to non-social movement and social movement in
TD individuals (Group 1), autistic individuals with dele-
tion (Group 2) and duplication (Group 3) copy number vari-
ants (CN'Vs), and autistic individuals without a CNV. They
found that only the TD group showed expected MD to social
stimuli, whereas the two CNV groups showed more MD for
non-social movement than social movement, and the group
of autistic individuals without a CNV showed very little MD
across all conditions (Hudac et al., 2015). These three stud-
ies (i.e., Dumas et al., 2014, and Hudac et al., 2015, 2017)
are important because their findings may partially explain
the lack of consensus in the Mu/ASD studies thus far. The
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first reason that these studies may explain Mu/ASD incon-
sistencies is that two of the studies found that MD dysfunc-
tion for autistic individuals occurred in the higher Mu fre-
quency band (10-13 Hz in Dumas et al.’s (2014) study and
10-12 Hz in Hudac et al.’s (2017) study), whereas all other
Mu/ASD studies extracted Mu from 8 to 12/13 Hz. This was
secondly because both Hudac et al.’s (2015, 2017) studies
found the nature of the MD dysfunction varied contingent
on subgroups of autistic individuals (i.e., those with and
without CNV deletions and duplications and those with and
without LGDMs). To address whether movement or stillness
had a greater effect on MD, Martineau et al., (2008) divided
the observation condition in two, viewing a human still
scene (i.e., a hand not moving) versus a human movement
scene (i.e., a hand moving an object). Although there were
no significant differences in MD between the autistic and TD
groups in the still scene condition, the autistic group failed to
show MD in response to the movement scenes, whereas the
TD group did. Moreover, autistic participants showed unu-
sual activation patterns in compensatory areas of the brain,
including increased cortical activity in the posterior region,
centro-parietal, and temporo-occipital sites concentrated in
the right hemisphere (Martineau et al., 2008). Another unu-
sual activation pattern (i.e., slower than average EEG spec-
trum weighted frequency) was found over the central region
of Mu in autistic participants by Pop-Jordanova et al., (2010)
when they compared their ASD data to an age-matched nor-
mative database. The authors of all these studies also argued
that these MD differences represented MNS dysfunction in
autistic persons (Bernier et al., 2007; Dumas et al., 2014;
Hudac et al., 2015, 2017; Martineau et al., 2008; Oberman
et al., 2005; Pop-Jordanova et al., 2010).

The link between MD differences and MNS dysfunc-
tion in autistic individuals led to the development of two
Mu/ASD neuro-feedback training (NFT) studies (Datko
et al., 2018; Friedrich et al., 2015). Both studies reported
that NFT was associated with emotional and behavioural
improvements in autistic individuals compared to either a
control group or baseline observations of the NFT group.
Datko et al., (2018) provided further validity for ASD MD
dysfunction by conducting an fMRI pre- and post-NFT train-
ing, which showed increased activation in the sensorimotor
region in autistic participants relative to TD participants.
This activation increase correlated with self and caregiver
reports of behavioural improvement in the ASD group
(Datko et al., 2018). While these findings seem impressive,
the validity of fMRI results has been called into question
(Yarkoni, 2009), with some research suggesting false-posi-
tive rates are as high as 70% (Eklund et al., 2016). This find-
ing concerning the false-positive rate for fMRI data is more
pronounced for results that show weak effect sizes. Although
Datko et al., (2018) did not report effect sizes, their sam-
ple size (N=10 ASD) was small, and their analyses were

numerous (N=11), so interpretations of their data should
be treated with caution (Hobson & Bishop, 2017a; Yarkoni,
2009).

All the significant differences in MD between ASD
and TD groups found in the eight studies described above
(Bernier et al., 2007; Dumas et al., 2014; Hudac et al., 2015,
2017; Oberman et al., 2005, 2008, 2013) were reported to
have occurred in the observation condition. However, four
other studies showed that MD in the observation condition
was not significantly different for autistic and TD individu-
als (Bernier et al., 2013; Fan et al., 2010; Raymaekers et al.,
2009; Ruysschaert et al., 2014). Additionally, these studies
found no significant differences in MD across any other of
the conditions tested, included more participants (M =19.25
ASD), and had greater heterogeneity in their inclusion cri-
teria (e.g., included both sexes and different age groups).

Discussion
Mu/ASD: What Do We Need to Know?
What Causes the Inconsistency in Mu/ASD findings?

The research concerning Mu in autistic individuals cannot
be considered conclusive and lacks consistency (Hobson &
Bishop, 2017b). Pinpointing the factors responsible for this
inconsistency can be difficult, but there are notable theoreti-
cal and methodological issues within the existing Mu/ASD
studies that may be contributing to these inconsistent findings.
Additionally, the six studies discussed below-measured factors
that accounted for some of the variability found in the Mu/
ASD studies (Bernier et al., 2013; Hudac et al., 2015, 2017,
Oberman et al., 2008, 2013; Ruysschaert et al., 2014).

Possible Factors Explaining Mu Inconsistency
in Previous Studies

Sample Size and Demographic Background of Partici-
pants There are major gaps and issues in the methodology of
Mu/ASD studies that need to be addressed in future studies.
The ASD sample sizes of the Mu/ASD studies ranged from 10
to 20 participants, which are insufficient to achieve adequate
statistical power and safeguard against false-positive and false-
negative results (Hobson & Bishop, 2017a). A lack of statistical
power can contribute to a reduced likelihood of detecting a true
effect, but also, if a significant effect is detected, it is less likely
that it is representative of a true effect (Button et al., 2013). To
put this in perspective, for a study using a repeated-measures
analysis of variance with two factors containing two levels (as
in Bernier et al.’s (2007) study), a sample size of at least 40
participants would be required to achieve sufficient statistical
power (90%) for a medium-sized main effect, and 47 would
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be required to detect interaction effects. Both Bernier et al.,
(2007) and Martineau et al., (2008) employed ASD groups of
14 participants, and Martineau included more conditions of
measurement, yet both studies still reported main and inter-
action effects. Future Mu/ASD researchers should endeavour
to increase sample sizes to provide more statistical power. In
terms of demographics, Table 2 shows that the Mu/ASD study
participants were either all male (in four studies) or included
only minimal numbers of females in the ASD group. It has been
previously established that MD varies according to the sex of
the participant (e.g., Cheng et al., 2008; Yang et al., 2009), yet
no Mu/ASD studies accounted for this or reported on any vari-
ation between the two sexes. Age is another demographic factor
that has been investigated only infrequently in Mu/ASD stud-
ies. Age influences both MD (Hagne, 1968; Stroganova et al.,
1999) and the expression of autistic traits (Padmanabhan et al.,
2013), yet few studies reported on the effects of age on MD.
Of those that did (i.e., Hudac et al., 2015, 2017), sample sizes
were too small (N=12), and their analyses were too many (e.g.,
model one N=8, model two N=16) to have adequate statistical
power (Hobson & Bishop, 2017a). It is often difficult to find a
balance between statistical power and the availability of consent-
ing participants in sample recruitment, particularly with clinical
populations. Nonetheless, given its effect in both ASD and MD,
age is a factor needing increased investigation in Mu/ASD stud-
ies. To ensure adequate generalisability of the Mu/ASD stud-
ies to underrepresented subgroups of autistic individuals, Mu/
ASD researchers in the future may benefit from (a) employing
a larger sample size, (b) recruiting either a female-only sample
or a sample with adequate numbers of males and females, and
(c) including age as a factor or covariant.

Social Stimuli Used: Social Complexity and Social Familiar-
ity Limited generalisability in the Mu/ASD findings may
be due to a lack of social relevance in the stimuli used
(Oberman et al., 2007). All the Mu/ASD studies except one
(i.e., Ruysschaert et al., 2014) investigated MP in relation
to semi-social stimuli (e.g., a video of a moving hand or a
picture of a face) and later generalised the results to sociali-
sation performance, rather than examining Mu during actual
exposure to social stimuli and social situations. A growing
body of evidence suggests that the ‘quality’ of social stimuli/
interactions (i.e., on-screen versus in-person) changes the
neural response (Ambrus et al., 2021; Hietanen et al., 2008;
Ponkinen et al., 2008, 2011). Ponkinen et al., (2008) found
that viewing faces in-person evokes greater event-related
potential responses than viewing a face on a screen (Ambrus
et al., 2021; Hietanen et al., 2008; Ponkénen et al., 2008,
2011). In a recent EEG study, in-person interactions (i.e.,
brief autobiographical interactions with a researcher) were
shown to elicit more robust representations of facial famili-
arity than repeated on-screen stimuli (e.g., the researchers’
face presented on a screen many times) (Ambrus et al.,

@ Springer

2021). Although there have been no comparisons of on-
screen and in-person conditions in the Mu/ASD studies, no
significant differences were found between groups or condi-
tions in the only Mu/ASD study with all in-person stimuli/
interactions (Ruysschaert et al., 2014). This contrasts with
the eight Mu/ASD studies (that used all on-screen stimuli)
where differences were found between ASD and TD groups
in the observation conditions. Taken together, the previous
research finding differences between neural responses to on-
screen and in-person stimuli and the mixed results in the Mu/
ASD studies thus far indicate that Mu may also be sensitive
to the ‘quality’ of the social stimuli. Controlling for a high
‘quality’, real-time social interaction and the movements
involved is a challenge in an experimental study, so it is
often reasonable to limit the stimuli to an on-screen presen-
tation (Ruysschaert et al., 2014). Also, because movements
trigger MD, they confound the ability to determine whether
it was the social interaction or the movement that caused the
MD, as well as risk movement-related artifacts in the EEG
data. However, with an intentional, scripted social encounter
that limits movement, it would be possible to measure MD
in autistic individuals in response to real-time, generalisable,
social stimuli/interactions. Embedded within the ‘quality’ of
the social interactions are the two factors of social complex-
ity and social familiarity.

Social Complexity Mu has been reported to be sensitive
to increasingly intense social stimuli in both ASD and TD
individuals (Bernier et al., 2013). For example, MD was
more likely to occur by viewing faces than hand move-
ments in both ASD and TD groups (Dawson and Bernier
2007). This indicates that MD is influenced by more ‘social’
stimuli (faces contain more social information than hand
gestures). Other Mu/ASD studies have found that MD varied
contingent on the social complexity of the stimuli that was
presented. For example, more MD would occur when view-
ing a hand moving a pencil than viewing a still picture of a
hand (Martineau et al., 2008). This suggests that Mu may
be sensitive not only to the shift of movement in the stimuli
(Gastaut & Bert, 1954), but also the social complexity of the
stimuli (Martineau et al., 2008).

Social Familiarity In 2008, Oberman and colleagues found
that familiarity (i.e., a familiar hand versus a novel hand)
modulated MD in both autistic and TD individuals. Those
authors also reported that the ASD group showed little MD in
the observation condition compared to baseline and used this
to support the ASD MD dysfunction hypothesis. There was
no mention, however, of how the ASD group compared to the
control group, which would have made a stronger argument
for MD dysfunction in autistic individuals. Nonetheless, the
finding that familiarity to the social stimulus impacts MD in
autistic individuals may explain some of the discrepancies
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in the Mu/ASD studies. This is because the participants may
have been more familiar with some stimuli than others (e.g.,
a hand cutting a piece of paper with scissors if the partici-
pant enjoyed crafts), which may have triggered more MD.
Increased MD to familiar stimuli was also demonstrated in
one of the earliest Mu studies by Gastaut & Bert, (1954), in
which the participant showed more MD if they related to the
video they were viewing (i.e., viewing a video about boxing
if the person was or previously was a boxer).

Genetic Phenotyping Two papers by Hudac et al., (2015,
2017) addressed some of the genetic mutations common in
autistic individuals in relation to MD. The first paper cov-
ered deletion and duplication of CNV in autistic individuals
and found that molecular subtyping could be used to form
MP phenotypes. The CNV groups exhibited more MD in the
non-social motion condition than the social motion condi-
tion, the ASD group without a CNV showed low levels of
MD in all conditions, and the TD group showed more MD
to the social motion condition (Hudac et al., 2015). Build-
ing upon their previous study, Hudac et al., (2017) used a
similar paradigm to investigate MD phenotyping in ASD
groups with LGDMs. Their results indicated that MD pat-
terns could be used to differentiate between pre- and post-
embryonic LGDMs, with those with the pre-embryonic
LGDMs showing increased MD to social motion and those
with post-embryonic LGDMs showing decreased MD to
social motion. These studies are important because they
show the heterogeneity of MD in autistic individuals and
lend credence to the notion that MD patterns are useful
phenotypic biomarkers to group autistic individuals. This
MD variability within ASD groups may also help partially
explain the lack of consensus in Mu/ASD studies.

Theoretical and Methodological Limitations
Needing to be Addressed in Future Research

The theoretical underpinnings of the Mu/ASD stud-
ies are an important issue because the research theory
drives the methodology. Most (N =7) of the Mu/ASD
studies used MD as a homologue for MNS activity and
designed studies to assess ‘MNS dysfunction’ (via MD)
in response to social stimuli. However, while there exists
an overlap in Mu/MNS engagement (Fox et al. 2016),
MD has been shown to occur in response to preparation
for human movement, while MNS engagement has only
been shown to occur in response to human movement
(Hobson & Bishop, 2017a). So, the studies designed to
assess MD function did not account for MD prior to
execution because they were focussed on the function
of the MNS instead. While this issue could be addressed
by measuring Mu in the preparation condition, future
Mu/ASD studies would benefit from building the

methodology on what is known about MD, rather than
the knowledge of the MNS activation.

Another reason why MNS engagement and MD should
not be considered interchangeable is that the invasive nature
of single-cell recording limits the opportunity to gather evi-
dence for MN in the motor cortex of humans (where MD
occurs) (Hobson & Bishop, 2017a). One of the few single-
cell studies investigated the extracellular activity from 1177
cells in the medial frontal and temporal cortices of the partici-
pants’ brains while they observed and executed hand actions
(Mukamel et al., 2010). Neuronal excitation occurred pre-
dominantly in the supplementary motor area and the areas
surrounding the hippocampus in response to observing and
executing hand actions, indicating that multiple regions of
the brain were involved in mirroring functions (Mukamel
et al., 2010). The authors also found neuronal subsets that
were excitatory during the execution of actions and inhibi-
tory during the observation of actions (Mukamel et al., 2010).
This study indicates that the MNS in humans is more complex
than in the animal models studied, and while it is probable
that MD gauges an aspect of MNS function, it is not a direct
measurement overlap. MD being used as a homologue for
the MNS is an important conceptual limitation in Mu/ASD
studies, but unfortunately, is one that is not widely consid-
ered (Pineda et al. 2008; Oberman & Ramachandran, 2007).
For example, in the instances where there have been reported
MD differences in the ASD groups compared to the control
groups, the authors have used this as evidence for global MN
dysfunction in autistic individuals (Bernier et al., 2007; Mar-
tineau et al., 2008; Oberman & Ramachandran, 2007). This
is an over-simplistic conclusion and may send a deterministic
message to autistic individuals, particularly those that were
underrepresented in the Mu/ASD studies (e.g., ASD females
and older adults). Instead, reports should focus on the Mu
dysfunction itself and apply strategies for improving MD from
a strong theoretical base of knowledge (Datko et al., 2018;
Friedrich et al., 2015).

Additional Factors Considering that MD is influenced by
a variety of additional factors not widely addressed in the
Mu/ASD studies (i.e., movement type, handedness, gender,
and cognitive and affective state (see Table 1) (Gastaut &
Bert, 1954; Marshall & Meltzoff, 2011; Oberman et al.,
2005; Pineda, 2005; Pfurtscheller et al., 2000; Stancak &
Pfurtscheller, 1996), it is clear that more research is needed
investigating these factors, particularly those known to vary
between autistic individuals.

Clinical Implications for Neurofeedback Training
Neurofeedback training (NFT) refers to a type of operant

conditioning for neural oscillations where the participant is
allowed real-time visual feedback of their neural responses

@ Springer



Review Journal of Autism and Developmental Disorders

(Friedrich et al., 2015). This feedback encourages the partic-
ipant to gain control of their neural oscillations across corti-
cal networks, which can result in functional and behavioural
changes (Sterman and Egner 2006). Regarding Mu, NFT
has been used with some success for enhancing resting MP
to help facilitate MD (Friedrich et al., 2015). It has accord-
ingly emerged as a non-invasive and effective treatment for
ASD social deficits (Datko et al., 2018). In the two NFT
studies reviewed in Table 2, there is evidence to suggest
that Mu-specific NFT is effective at reducing ASD-related
social deficits. However, the sample sizes of the NFT group
in Friedrich et al.’s (2015) study were N=6, and for Datko
et al., (2018) study, N=10, which were both too small to
have sufficient statistical power to detect significant effects
(Hobson & Bishop, 2017a). Additionally, in both studies,
there were no follow-up assessments to determine if the
social and behavioural changes were sustained.

The mixed evidence for MD dysfunction in autistic indi-
viduals indicates that the development and implementation of
Mu-specific NFT programs for autistic individuals are prema-
ture. This is because NFT is designed to differentially impact
brain functioning contingent on its protocol and implementation
(Enriquez-Geppert et al., 2019). The importance of a strong
theoretical backing prior to research or clinical implementation
cannot be understated when working with the brain. There is
the potential for causing harm using a protocol based on the
diluted evidence for ASD MD dysfunction, which is further
compounded by a lack of regulation and standards in the clini-
cal practice of NFT (Enriquez-Geppert et al., 2019). Research
that addresses the limitations of Mu/ASD studies is needed
prior to developing an NFT protocol with an emphasis on Mu
training.

Conclusion and Future Directions

Many of the Mu/ASD studies reviewed here point to differences
between autistic and TD individuals in MP. However, important
theoretical (i.e., the use of MD as a homologue for the MNS)
and methodological (i.e., sample size and demographic, and
social stimuli) factors limit the validity and reliability of those
study’s conclusions. To ensure the Mu/ASD findings generalise
to meaningful social interactions, the factors of social familiarity
and complexity need to be considered during the development of
the experimental stimuli. Moreover, increased knowledge about
Mu variation according to gender, handedness, and cognitive
and affective state in autistic individuals is also needed as these
factors influence MP.
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