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Abstract 

Structural variations (SVs) play a significant role in speciation and adaptation in many species, yet few studies have explored the preva- 
lence and impact of different categories of SVs. We conducted a comparati v e anal ysis of long-r ead assemb led r efer ence genomes of 
closel y r elated Eucalyptus species to identify candidate SVs potentially influencing speciation and adaptation. Interspecies SVs can 

be either fixed differences or polymorphic in one or both species. To describe SV patterns, we employed short-read whole-genome 
sequencing on over 600 individuals of Eucalyptus melliodora and Eucalyptus sideroxylon , along with recent high-quality genome assem- 
blies. We aligned reads and genotyped interspecies SVs predicted between species reference genomes. Our results revealed that 49,756 
of 58,025 and 39,536 of 47,064 interspecies SVs could be typed with short reads in E. melliodora and E. sideroxylon , r especti v el y. Focusing 
on inversions and translocations, symmetric SVs that are readily genotyped within both populations, 24 were found to be structural 
di v ergences, 2,623 structural pol ymorphisms, and 928 shar ed structural pol ymorphisms. We assessed the functional significance of 
fixed interspecies SVs by examining differences in estimated recombination rates and genetic differentiation between species, re- 
vealing a complex history of natural selection. Shared structural polymorphisms display ed enric hment of potentially adaptive genes. 
Understanding how different classes of genetic mutations contribute to genetic diversity and reproductive barriers is essential for 
understanding how organisms enhance fitness, adapt to changing environments, and diversify. Our findings reveal the prevalence of 
interspecies SVs and elucidate their role in genetic differentiation, adaptive evolution, and species divergence within and between 

populations. 

Ke yw or ds: Eucalyptus , structur al v ariations, adapti v e ev olution, genome di v ergence, comparati v e genomics 
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Introduction 

Structur al m utations that alter str etc hes of DNA gr eater than 

50 bp in length have the potential to dr asticall y c hange pheno- 
types [ 1–3 ] and contribute to population div er gence and speci- 
ation [ 4 , 5 ]. Typically termed chromosomal rearrangements or 
structur al v ariations (SVs), these lar ge m utations include inv er- 
sions , translocations , duplications , insertions , and deletions [ 6 ].
Until r ecentl y, ho w e v er, tec hnological constr aints—namel y, se- 
quencing r ead lengths—hav e inhibited their discov ery [ 7 ], and 

their role in population evolutionary processes remains poorly un- 
derstood [ 8 ]. Using third-generation long-read sequencing, such 

as those offered b y Oxfor d Nanopor e Tec hnologies and P acBio,
evolutionary genomic studies can now affordably assemble highly 
contiguous genomes of se v er al individuals acr oss r elated species 
[ 9 , 10 ]. The next challenge is to perform population-scale SV dis- 
covery and examine the role of SVs in population divergence and 

speciation. 
Structur al v ariation can occur in all parts of the genome: cod- 

ing, noncoding, and re petiti ve regions such as transposons, telom- 
er es, and centr omer es. When they occur within coding regions,
Recei v ed: November 5, 2023. Revised: Mar c h 11, 2024. Accepted: May 14, 2024 
© The Author(s) 2024. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
hey may alter regulatory elements, introns, exons, whole genes,
r multiple genes [ 11 , 12 ]. Even when they do not occur within
oding regions, they can change the chromatin structure and im-
act gene expression [ 13 , 14 ]. Different types of SVs are known
r predicted to have different genomic effects . In versions can in-
ibit recombination between different arrangements, reducing 
he ov er all r ecombination r ates between homologous c hr omo-
ome pairs and fixing the alleles ca ptur ed within their bounds
 15 ]. Inv ersion-linked, cosegr egating alleles can become r epr oduc-
iv el y isolated and purged through underdominant selection, due
o increased sterility of heterozygous individuals [ 16–18 ]. Ho w ever,
 novel inversion, if adaptive , ma y pro vide enough selective ad-
 anta ges to outweigh its disadv anta ges, be selected for, and rise to
igh frequency within populations [ 19 , 20 ]. Translocations, while

ess studied than other r earr angements [ 21 ], may have similar ge-
omic effects as in versions [ 22 ]. Duplications , highly common and
lso likely to be selected against [ 23 , 24 ], could be pr eserv ed due
o their ability to acquire new function (neofunctionalization) or 
y retaining a subset of original function (subfunctionalization) 
 24–27 ]. Large ( > 50 bp) insertions and deletions, whic h ar e often
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Figure 1: Structural variations within sister species . T he once highly syntenic ancestral population separates and divides into 2 non-interbreeding 
gr oups. Structur al v ariations, whic h r educe genome-wide synten y, discov er ed between the 2 gr oups may be genotyped within populations as fixed or 
pol ymor phic. When fixed in a single population, SVs become a structural divergence (SD). If polymorphic within 1 population, SVs become structural 
pol ymor phisms (SPs) or, if pol ymor phic in both populations, shared structural polymorphisms (SSPs). The different classes of population genotyped 
SVs may have different impacts on recombination rates , divergence , and adaptation. 
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Table 1: Genome assembly statistics for E. melliodora and E. 
sideroxylon 

E. melliodora E. sideroxylon 

Scaffolded genome size (bp) 639,266,298 592,154,182 
% of genome in scaffolds 97.60% 98.15% 

Scaffold N50 (Mbp) 59.47 60.48 
Contig N50 (Mbp) 1.87 5.22 
Contig count 564 297 
BUSCO complete 98.54% 96.47% 

LAI 18.31 18.70 
Re petiti ve % (TE %) 48.50% (47.13%) 47.83% (46.58%) 
Gene candidates 58,902 57,299 
Proportion of genome in gene 
candidates 

21.85% 21.04% 
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enotyped as pr esence/absence v ariants (PAVs), copy number
ariations, or gene duplications, are also very common within
enomes [ 8 , 28 ]. These SVs are known to impact genes and gene
tructure, as well as affect phenotypes [ 29 , 30 ], although many
an also be neutral. 

An ancestral population, once highly syntenic, undergoes di-
ision into 2 non-interbreeding groups, with SVs emerging be-
ween them, as we have illustrated in Fig. 1 . These interspecies SVs
an be genotyped as fixed within 1 species, leading to structural
iv er gence (SD), or pol ymor phic within 1 species, termed struc-
ur al pol ymor phisms (SPs) [ 31 ]. Adding complexity, SVs can also
e genotyped as pol ymor phic in both populations, r eferr ed to as
har ed structur al pol ymor phisms (SSPs). To classify interspecies
Vs, genotyping within both species is essential, enabling us to
ategorize them based on their presence/absence in population
 and population 2 as fixed/absent (SD), fixed/pol ymor phic (SP),
bsent/pol ymor phic (SP), or pol ymor phic/pol ymor phic (SSP). The
ate at which SVs are SD, SP, or SSP is unkno wn; ho w ever, rates
ill depend on the evolutionary distance between populations or

pecies, effective population size, and mutation rate, among other
actors. If the status of an SV remains uncertain, inferences of its
mpact on div er gence and adaptation are difficult. 

Analyzing the genomic differences between recently diverged
pecies has r e v ealed genome r egions involv ed in r epr oductiv e iso-
ation [ 32 ], ada ptiv e genes [ 33 ], and the genome-wide landsca pe
f diversification between and within chromosomes [ 34–36 ]. Here,
sing 2 closely related Eucalyptus species, Eucalyptus melliodora and
ucalyptus sideroxylon [ 37 , 38 ], we genotype SVs within their respec-
ive populations and calculate their rates of population variabil-
ty. Structur al v ariation r ates ar e compar ed to find e vidence of SD,
P , and SSP . Additionally , we examine recombination rates ( ρ) and
xation index ( F ST ) within population fixed SVs to assess allele fix-
tion and accelerated evolution between populations. 

esults 

enome scaffolding and annotation (repeats and 

enes) 
e generated Hi-C data and performed Hi-C scaffolding to order,

rient, and combine contigs into pseudo-c hr omosomes for E. mel-
iodora . Hi-C sequencing generated 45.48 Gbp in 151,590,503 paired
eads, giving an estimated genome cov er a ge of 71.14 ×. After align-
ng Hi-C reads to E. melliodora ’s contigs and identifying PCR dupli-
ates, 18,507,548 (12.21%) read pairs were found to contain linkage
nformation. Further examination sho w ed that 9,612,532 (6.34%)
ead pairs spanned contigs, and 8,895,016 (5.87%) read pairs
ere contained within a single contig. Noninformative reads were
 himeric, unma pped, PCR duplicates or had low mapping quality
MAPQ < 30, mostly due to multimapping of short reads to repeat
egions). For all Hi-C statistics, see Supplementary Table S1 . Using
D-DN A, E. melliodora ’s contigs w ere scaffolded ( Supplementary
igs. S1 and S2 ). Contigs for E. sideroxylon wer e syntenicall y scaf-
olded against E. melliodora ’s Hi-C scaffolded genome. Both BUSCO
nd long terminal r epeat assembl y index (LAI) scor es indicate that
oth genomes are highly complete (Table 1 ). Both genomes were
nnotated for transposable elements (TEs), simple repeats, and
enes (Table 1 ). Transposable elements and simple repeats were
nnotated with genome-specific de novo r epeat libr aries. Soft r e-
eat masked genomes were next annotated for genes. 

ynteny and structural variation annotation 

hared sequences between E. melliodora and E. sideroxylon were
dentified, classified as syntenic , in v erted, tr anslocated, or dupli-
ated, and both genomes w ere accor dingly annotated. Addition-
ll y, unaligned r egions in eac h genome, arising fr om insertions,
eletions, or div er gence, wer e annotated. An estimated 85.94% of
. melliodora ’s genome was found to be shared with E. sideroxylon ’s
enome; conv ersel y, 87.70% of E. sideroxylon ’s genome was found
o be shared with E. melliodora ’s genome . T he majority of shared
equences were syntenic. A more detailed analysis of alignment
ypes sho w ed that syntenic regions are , on a verage , frequent and

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
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Table 2: Proportion, number of regions, and total amount of the genome that was found to be syntenic, r earr anged, and unaligned within 

E. melliodora and E. sideroxylon when their genomes were aligned 

Genome Statistic Syntenic Inversion Tr ansloca tion Duplication Unaligned 

E. melliodora Count 19,137 232 10,645 26,762 20,386 
Av er a ge size (Kbp) 16.18 ± 20.93 202.96 ± 1097.87 11.41 ± 69.65 5.25 ± 32.57 4.30 ± 7.13 

Total (Mbp) 309.60 47.09 121.49 140.63 87.74 
Proportion 49.62% 7.55% 19.47% 22.54% 14.06% 

E. sideroxylon Count 19,137 232 10,645 20,102 18,777 
Av er a ge size (Kbp) 16.14 ± 20.87 177.67 ± 851.99 11.29 ± 65.34 4.30 ± 33.33 3.81 ± 6.67 

Total (Mbp) 308.78 41.22 120.22 86.44 71.51 
Proportion 53.13% 7.09% 20.69% 14.87% 12.30% 

Figure 2: Synten y, r earr anged, and unaligned e v ent sizes. As syntenic , in v erted, and tr anslocated r egions ar e a ppr oximatel y the same size within eac h 
genome (differing only by small indels), these alignment types are only shown for E. melliodora . Duplications and unaligned regions are unique to each 
genome and as such are shown for both E. melliodora and E. sideroxylon . See Supplementary Fig. S4 for all e v ent sizes for both genomes. 
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lar ge; inv ersions ar e r ar e and typicall y v ery lar ge; tr anslocations 
ar e moder atel y sized and fr equent; duplications ar e v ery fr equent 
and small; and unaligned regions are very frequent and small (Ta- 
ble 2 , Fig. 2 ). The distribution of synten y, inv erted, tr anslocated,
and duplicated regions between the genomes of E. melliodora and E.
sideroxylon was also examined ( Supplementary Fig. S3 ). Briefly, all 
c hr omosomes exhibited a substantial number of r earr angements 
distributed across their entire length. Notably, chromosomes 9 
and 10 were found to contain a particularly prominent inversion.
These observations highlight the complexity of genome structural 
evolution and emphasize the need to investigate their functional 
implications and evolutionary significance. 

Variant calling and PCA 

For e v ery short-r ead sequencing dataset in the 2 populations, the 
total number of sequenced bases was calculated and samples 
that had low cov er a ge ( < 10 ×) were removed. E. melliodora ’s sam- 
ples yielded on av er a ge 9.49 Gbp (range: 6.27–27.22 Gbp); simi- 
larly, E. sideroxylon ’s samples yielded on av er a ge 9.10 Gbp (range: 
5.82–28.87 Gbp). Examined across both populations and both 

r efer ence genomes , co v er a ge av er a ged 15.40 × (r ange: 10.00 ×–
48.7 ×). After aligning both population sequences to both ref- 
erence genomes and filtering out samples with low alignment 
( < 75%), an av er a ge of 96.55% (range: 77.91%–98.80%) of reads 
ligned to both genomes. Variants were called for the remain-
ng samples, resulting in 4 datasets (r efer ence genome–population 

pecies): E. melliodora–E. melliodora , E. melliodora–E. sideroxylon , E.
ideroxylon–E. melliodora , and E. sideroxylon–E. sideroxylon (Table 3 ,
ig. 3 ). 

Principal component analysis (PCA) identified 15 samples that 
er e most likel y misidentified or an unc har acterized hybrid,
hic h wer e r emov ed ( Supplementary Fig. S5 ). After r emov al of

hese samples, the PCA sho w ed 2 distinct species groups (Fig. 4 ).
ithin the combined E. melliodora dataset, 32.45 million sites, or

.20% of the genome, were found to be variable. Of these single
ucleotide pol ymor phisms (SNPs), 49.61% wer e found segr egat-

ng within both species, 21.76% were private to E. melliodora , and
s expected, a larger proportion, 28.63% were private to the non-
 efer ence species E. sideroxylon . Within the combined E .siderox-
lon SNP dataset, we observed the same pattern; 31.28 million
NPs (5.38% of the genome) were found, of which 49.68% segre-
ated within both species, and 20.24% wer e priv ate to E. sideroxy-
on , while a larger proportion, 30.08%, was found within the non-
 efer ence species (Table 3 ). 

tructur al v aria tion genotyping 

nterspecies SVs identified between E. melliodora and E. sideroxy- 
on may be categorized as SD, SP, or SSP. Structur al div er gences

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
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Table 3: Short-read sequencing, alignment, SNP, and recombination rate estimate statistics 

Reference species E. melliodora E. sideroxylon 

Population species E. melliodora E. sideroxylon E. melliodora E. sideroxylon 

All samples 459 154 459 154 
Filtered samples 425 138 425 138 

Estimated read coverage Av er a ge 14.90 16.03 14.82 15.52 
Range 10.00–42.58 10.59–45.97 10.11–45.16 10.06–48.76 

Read alignment Av er a ge 97.06% 96.43% 96.32% 95.81% 

Range 78.40%–98.80% 78.70%–98.56% 77.91%–98.10% 78.38%–98.02% 

SNPs (million) Av er a ge 9.74 10.93 11.36 8.88 
Range 6.77–13.50 8.30–13.80 7.07–14.80 7.61–12.05 
Total 23.16 25.39 24.96 21.87 

Grand total 32.46 31.28 
Recombination rate Genome-wide 0.050 — 0.049 —
estimates Chr omosome av er a ge r ange 0.049–0.052 — 0.047–0.049 —

Figure 3: Sample cov er a ge, alignment, and SNP distribution s . Left figures use E. melliodora as the r efer ence, showing the per sample density of sample 
cov er a ge, percenta ge of reads successfully aligned to reference, and the number of SNPs detected. Right figures use E. sideroxylon as the r efer ence. 
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r e an y e v ent fixed within 1 species and absent from the other.
tructur al pol ymor phisms ar e an y e v ent fixed or absent in 1
pecies and pol ymor phic in the other. Shared structural polymor-
hisms are SVs that are polymorphic in both populations (Fig. 1 ).
enotyping an SV as SD, SP, or SSP r equir es examination within
oth species. While symmetric r earr angements, suc h as inver-
ions and translocations, can be directly genotyped in both pop-
lations, duplications pose challenges due to their asymmetry.
lthough converting duplications into insertions for short-read
enotyping is possible, accur atel y placing them within the op-
osite genome is difficult and may result in false-negative geno-
ypes. Additionall y, genotyping unaligned r egions intr oduces un-
ertainties, especially as they may r epr esent insertions, deletions,
r div er gent sequences. Short-r ead alignments with low ma pping
cores may confound genotyping of unaligned regions [ 39 , 40 ].
ence, we a ppr oac h unaligned r egions with caution; r efr ain fr om
ategorizing duplications as SD, SP, or SSP; and focus our analy-
is on inversions and translocations for more reliable results. All
nal yses ar e performed per allele (2 × population size), not per
ample. 
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Figure 4: Principal component analysis (PCA) and sample distribution. Left PCA plot uses E. melliodora as the r efer ence genome following the r emov al 
of mislabeled, hybrid, and outlier samples. Right ma p shows the spatial distribution of samples acr oss southeastern Austr alia. For PCA using E. 
sideroxylon as the r efer ence, see Supplementary Fig. S6 . 
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Genotyping SVs with short-read alignments resulted in the suc- 
cessful genotyping of 81.11% and 79.46% of SVs in E. melliodora 
and E. sideroxylon , r espectiv el y (Fig. 5 ). Most SVs wer e found to be 
fixed (60.65%–85.10%) or pol ymor phic (14.84%–38.57%), with the 
r emaining small pr oportion (0%–1.45%) being private to the ref- 
erence or assembly/scaffolding artifacts. To categorize symmet- 
ric interspecies SVs as SD, SP, or SSP, we combined the status of 
fixed inversions ( E. melliodora : 130; E. sideroxylon : 174), polymor- 
phic inversions ( E. melliodora : 66; E. sideroxylon : 37), fixed translo- 
cations ( E. melliodora : 5,652; E. sideroxylon : 6,634), and polymor- 
phic translocations ( E. melliodora : 3,288; E. sideroxylon : 2,117) across 
both species (Table 4 ). The anal ysis r e v ealed that most inver- 
sions and tr anslocations wer e either fixed in both species or 
not successfully genotyped in both species . T he r emaining pr o- 
portion consisted of SPs or SSPs, and a small number of SD.
For details on inversion and translocation classification within 

both species and subsequent SD, SPP, or SP classification, see 
Supplementary Table S2 . 

Examination of pol ymor phic SVs r e v ealed a bimodal distribu- 
tion of alleles containing the SV (Fig. 5 ). Pol ymor phic SVs were ei- 
ther v ery fr equentl y genotyped ( > 90%) or v ery infr equentl y geno- 
typed ( < 10%) within the 2 species. Ho w e v er, while bimodall y dis- 
tributed, the v ery fr equent SV peak was found to be m uc h higher 
than the very infrequent SV peak. 

Structur al v aria tion linkage 

Linked variations are those that co-occur more often than would 

be expected by r andom c hance. Structur al v ariations may be 
linked by physical pr oximity, drift, or e v olution. Ev olutionarily 
linked SVs ar e likel y to contribute to an individual’s survivability 
and be r equir ed for gamete viability and/or the offspring’s adap- 
tive potential. To find evidence of SV linkage, we measured corre- 
lations among all inversions and translocations for all individuals 
within both species. For efficient analysis , in versions and dupli- 
ations wer e gr ouped by type (SD, SP, and SSP). Inspection of the
 esulting corr elation heatma ps shows 40,118 SVs are linked ( R 

2 ≥
.6) across all categories (Fig. 6 ). To examine the potential role of
hysical proximity on SV linkage, we examined the distance be-
ween correlated SV pairs. Of SV pairs, 89.24% were found on dif-
er ent c hr omosomes. When on the same c hr omosome, SVs wer e
t least 221 Kbp separated. 

hared structural polymorphisms Clusters of 
rthologous Groups (COG) terms 

s SSPs are likely ancestral SVs that have survived drift, un-
erdominant selection, and lineage di vergence, the y may con-
ain genes of ada ptiv e or other e volutionaril y significant value.
fter attempting to functionally annotate all genes across the 
enomes and placing them within Clusters of Orthologous Groups 
COG) categories [ 41 ], 247 of the total 281 gene candidates in SSPs
ere annotated (Fig. 7 ). These genes were enriched for DNA repli-

ation, DN A recombination, DN A r epair, posttr anslational mod-
fication, pr otein turnov er, c ha per ones, signal tr ansduction, in-
ercellular communication, and unexplored aspects of biology.
SP genes were found to be underr epr esented in categories r e-
ated to fundamental cellular functions, such as protein syn- 
hesis, defense against pathogens, maintaining cellular integrity,
r oviding structur al support, and r egulating crucial molecular 
rocesses involving amino acids, nucleotides, and coenzymes.
dditionally, we performed a Gene Ontology (GO) [ 42 ] enrich-
ent test for all genes identified in SSPs. We found 51 GO terms

shared: 31; E. melliodora : 11; E. sideroxylon : 9) to be significantly
ess r epr esented in SSP genes compar ed to all genes, with no
O terms found to be significantl y higher. GO terms wer e as-
ociated with biological process (28), cellular component (15),
nd molecular function (8). Further details can be found in 

upplementary Table S3 . 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
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Figure 5: Interspecies SVs and unaligned region frequencies within E. melliodora and E. sideroxylon . 

Table 4: Categorization of interspecies inversions and translocations as SD, SP, and SPP 

Shared structural 
polymorphism 

Structural 
polymorphism Structural di v ergence 

Priv a te to reference or 
artifact 

Inversion 18 (7.79%) 60 (25.98%) E. melliodora 0 153 (66.23%) 
E. sideroxylon 0 

Translocation 910 (8.81%) 2,563 (24.80%) E. melliodora 16 (0.15%) 6,825 (66.06%) 
E. sideroxylon 18 (0.17%) 
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ffect of syntenic, rearranged, unaligned regions 

nd genes on recombination rate ( ρ) 
fter annotating SVs in both species and determining their fre-
uencies, we calculated ρ for fixed SVs longer than 2 Kbp across
he r efer ence genomes. Prior to these calculations, we phased
NPs, initiall y ac hie ving 20.56% linka ge within ha plotype bloc ks
sing read alignments, and then finalized the phasing using
 hidden Markov model (HMM)–based a ppr oac h. After separ a-
ion of SNPs into parental haplotypes, we found that E. sideroxy-
on consistently exhibited higher and more variable ρ compared
o E. melliodora . Chr omosome-specific r ecombination r ates dis-
layed notable variability without discernible patterns (Table 3 ,
upplementary Table S4 , and Supplementary Figs. S7 and S8 ). 

An initial analysis of variance assessment indicated differ-
nces in ρ for our different categories of genome regions, for both
pecies ( P value; E. melliodora : 8.35 × 10 −276 and E. sideroxylon : 1.85

10 −272 ). To determine if any region type(s) were contributing
o differences in ρ, we performed Tuk e y’s test. Tuk e y’s test ad-
usted P values to account for the total species error rate. Tuk e y’s
est for E. melliodora r e v ealed that, in comparison to syntenic re-
ions , a v er a ge ρ was higher for genes , transposons , in versions ,
nd duplications (Fig. 8 A). Ho w e v er, statisticall y significant dif-
er ences wer e observ ed onl y for genes, tr ansposons, and dupli-
ations. Notabl y, our r esults suggest that genes and tr ansposons
nder go r ecombination mor e fr equentl y than other genomic re-
ions. Consequently, the sequences within genes and transposons
assed onto offspring may be the most highl y div erse among the
 egions tested. Furthermor e, duplications sho w ed higher values
han translocations and unaligned regions . In versions exhibited a
ider confidence interval (CI) due to their lo w er number of events.
 similar pattern was observed by Tuk e y’s test for E. sideroxylon .
hile genome-wide statistical observations of ρ were unreveal-

ng, man y SVs wer e observ ed having ρ less than the mean syntenic
Fig. 8 C, D). Detailed significance testing results are presented in
upplementary Table S5 . 

ffect of syntenic, rearranged, unaligned regions 

nd genes on fixation index ( F ST ) 
s per our examination of ρ, we calculated the av er a ge F ST for all
xed SVs, as well as genes and transposons greater than 2 Kbp

n length, and performed Tuk e y’s test (Fig. 9 A). Syntenic regions
ere used as the reference point to evaluate the extent of ge-
etic differentiation of SVs. Using E. melliodora as the r efer ence,
ll region types had significantly less divergence between species
xcept genes and in versions . Genes had significantly more diver-
ence and inversions were sparse and as such had a wide confi-
ence interval. A similar pattern was observed for E. sideroxylon .
hile genome-wide statistical observations of F ST were unreveal-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
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Figure 6: Correlation of SVs between samples. A positive correlation between SV implies that SVs exhibit a nonrandom association and suggests that 
these variants tend to co-occur within the population. Categories of SV not present were either empty, as in the case of inversion SD, or contained too 
many SV to visualize clearly, as in the case of translocation SP and translocation SSP. Undefined correlations, resulting from the failure of short reads 
to r esolv e pr esence/absence of SVs, wer e r emov ed. 

Figure 7: Clusters of Orthologous Groups (COG) terms for all genes and genes found within SSPs. 
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Figure 8: Tuk e y’s test for estimated r ecombination r ates of fixed SVs, unaligned r egions , genes , and transposons . (A) Mean and 95% confidence interval 
for all e v ents . Vertical lines show a v er a ge ρ for syntenic regions. Asterisk ( ∗) indicates region types that ar e significantl y differ ent fr om syntenic r egions 
( P ≤ 0.05). (B) The number of e v ents included in the analysis. (C) Estimated recombination rate distribution for E. melliodora . (D) Estimated 
r ecombination r ate distribution for E. sideroxylon . 

Figure 9: Tuk e y’s test for fixation index of fixed SVs , unaligned regions , genes , and transposons . (A) Av er a ge F ST and 95% confidence interv als 
calculated fr om av er a ge F ST v alues for all r egions. For eac h r efer ence genome, SNPs fr om both species wer e combined and F ST calculated. Vertical lines 
show av er a ge F ST for syntenic r egions. Asterisk ( ∗) indicates r egion types that ar e significantl y differ ent fr om syntenic r egions ( P ≤ 0.05). (B) Fixation 
index distribution for E. melliodora . (C) Fixation index distribution for E. sideroxylon . For e v ents counts see Fig. 8 B. 
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Figure 10: Tuk e y’s test for SNP density of fixed SVs , unaligned regions , genes , and transposons . (A) Mean and 95% confidence interval for all events. 
Vertical lines show av er a ge SNP density for syntenic regions. (B) SNP density distribution for E. melliodora . (C) SNP density distribution for E. sideroxylon . 
For e v ents counts, see Fig. 8 B. 
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ing, many SVs were observed having F ST less than the mean syn- 
tenic (Fig. 9 B, C). Examination of F ST histograms for all e v ent types 
sho w ed a left-shifted Poisson distribution, with man y e v ents hav- 
ing low F ST scores. For detailed significance testing results, refer to 
Supplementary Table S6 . 

Effect of syntenic, rearranged, unaligned regions 

and genes on SNPs 

SNP density can significantly impact the precision and resolu- 
tion of both ρ and F ST [ 43–45 ]. Higher SNP density enables finer- 
scale mapping of recombination events and more accurate pop- 
ulation differ entiation measur ements, while lo w er SNP density 
gives coarser results with reduced precision. Due to inconclusive 
results in both ρ and F ST analyses, we examined SNP densities of 
SVs , genes , and TEs . 

As per our ρ and F ST analyses, we used Tuk e y’s test and 

histograms to examine the differences in SNP densities for all 
fixed SVs and genes and tr ansposons gr eater than 2 Kbp in 

length (Fig. 10 A–C). For detailed significance testing r esults, r e- 
fer to Supplementary Table S7 . Reassuring to our SV annota- 
tion method, unaligned regions were the most diverged region 

type, containing the largest number of SNPs. Similarly reassur- 
ing for our annotation method, genes were the least div er ged,
containing the fewest SNPs. No significant correlations between 

the number of SNPs and ρ were observed. Notably, genes, trans- 
posons, and duplications had high ρ, while onl y tr ansposons had 

a high SNP density. Conv ersel y, unaligned and translocated re- 
gions had low ρ, while onl y tr anslocations had fe w SNPs. Simi- 
larl y, no distinct corr elations between SNPs and F ST v alues wer e 
observed. Genes , despite ha ving few SNPs , contained high F ST val- 
ues, whereas unaligned regions, with many SNPs , displa y ed lo w 
 ST v alues. Tr anslocated r egions, with an intermediate number of
NPs, also exhibited low F ST values. Although SNP densities con-
ribute to the complex pattern of genomic differentiation, they 
ho w ed no clear association with ρ and F ST calculations. 

iscussion 

tructur al v ariations ar e a major form of genomic v ariation, af-
ecting more nucleotides than SNPs [ 46 ]. Despite their promi-
ence, the functional and evolutionary impacts of SVs remain 

oorly understood [ 47–49 ]. To date, most population-scale SV
tudies have focused on within-population SV discovery and asso- 
iation with environments or phenotypes [ 50 , 51 ]. Several studies
ave also directly examined SV and their contribution to func-
ional changes [ 52 , 53 ]. Here we genotyped interspecies SVs and
escribed their frequencies within and among both species. Of 
articular novelty is our comparison of translocations and inver- 
ions, symmetric SVs that may be present within 1 or both species
nd at different frequencies. Between our recently diverged Euca- 

yptus species pair, our results demonstrate that SVs contribute to
enome div er gence, intr aspecies genetic div ersity, and shar ed ge-
etic div ersity. Potentiall y of gr eat inter est ar e SSPs; these lar ge
 utations pr edate linea ge div er gence and r emain pol ymor phic
ithin both species, potentially containing locall y ada ptiv e or oth-

rwise important genes and allele combinations. Additionally, ex- 
mination of av er a ge ρ and F ST within fixed SVs demonstrates the
ariable effects of these genetic variations on genome differenti- 
tion and recombination. 

Genetic mutations that promote and reinforce lineage di- 
 er gence ar e the genetic basis of r epr oductiv e isolation,
hich is essential to the process of speciation. Structural 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
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 utations, by affecting r ecombination, phenotypes, or al-
ering/remo ving/subfunctionalizing genes , are of particular
mportance to speciation processes [ 5 ]. Barrier complexity and
symmetry are underappreciated components of re producti ve
solation. Barrier complexity involves the combinatorial interplay
f genetic barriers that collectiv el y r educe r epr oductiv e success
etween individuals [ 54 ]. Successful offspring are survivors
f genetic combinations, possessing genomes sufficiently free
rom barrier loci (genomic loci that create barriers to gene flow
mong populations [ 55 ]) to allow r epr oduction to occur. Barrier
symmetry refers to the r elativ e effectiv eness of r epr oductiv e
arriers between 2 gr oups, r esulting in different hybridization
uccess rates [ 56 ]. E. melliodora and E. sideroxylon are known to
ybridize, and successful hybridization likely results from the
omplex interplay between the numerous SDs , SPs , and SPPs
hat come together in a particular hybrid. Evidence of linked
Ds , SPs , and SPPs was observed within both Eucalyptus species.
hese linked SV combinations may be r equir ed for r epr oductiv e
uccess, or there could be some other fitness consequence that is
aintaining selection for that linked state. Barrier SVs potentially

xhibit a higher degree of re producti ve isolation compared to
on-SV r egions, incr easing genetic differ entiation within these

oci [ 57–59 ]. Ho w e v er, v ariation in F ST did not pr ovide sufficient
vidence on average to support this conclusion, possibly due to
he recent divergence of our species and the importance of only
 few k e y interacting loci. 

Similar to r epr oductiv e isolation, understanding how all types
f genetic mutations contribute to the creation and maintenance
f genetic diversity is crucial to understanding how organisms im-
r ov e fitness and adapt to their changing environments [ 8 , 60 , 61 ].
nversions and translocations aid in adaptive evolution by fixing
llele combinations, duplications contribute to the de v elopment
f new genes, and insertions and deletions, often described as
AVs, modify gene expression and gene content [ 62–64 ]. A sub-
tantial number of inversions and translocations were success-
ully genotyped within both species. Most inversions and translo-
ations were SP or SSP, making them candidates for exploring
da ptiv e genes and alleles. Of particular note are SSP inversions
nd tr anslocations, whic h sho w ed e vidence of gene enric hment
n potentially adaptive genes. 

Duplications are known to be highly common and an important
ource of evolutionary novelty [ 65–66 ] and were the most com-
on type of SV in our analysis. Most duplications were found to

e fixed, with the remainder being almost entir el y pol ymor phic.
iven their asymmetry, duplications were genotyped only within

heir r espectiv e host genomes, r esulting in an inability to catego-
ize them as SD, SP, or SSP. Nonetheless, duplications successfully
enotyped in our study are potential candidates for ada ptiv e loci,
ikely having withstood the influences of genetic drift and purify-
ng selection. Predicting the adaptive effects of unaligned regions
resents a significant challenge, given their potential to encom-
ass insertions , deletions , or highly divergent sequences. When
naligned regions result from highly divergent sequences, short
eads will align poorly, confounding genotyping [ 39 , 40 ]. Geno-
yped as deletions, most unaligned r egions wer e fixed and the re-

ainder highl y fr equent. Fixed unaligned r egions may corr espond
o highl y div er gent r egions or deletions in the genome of the other
pecies . P ol ymor phic unaligned regions could indicate insertions
ithin the host species genome or deletions within the genome of

he other species . T hese difficult to inter pr et r egions ma y be PAVs ,
da ptiv e loci, or selectiv el y neutr al or deleterious loci undergoing
otential purifying selection. Further investigations are essential
o uncover their precise roles and implications. 
It is now clear that SVs are of great evolutionary importance
nd must be considered when studying genetic diversity and
enome evolution [ 64 ]. To better e v aluate the impact of SVs on
volution, a combination of interspecies and intraspecies studies
s crucial. While structural polymorphisms may be r epr oductiv e
arriers or ada ptiv e loci, they could also be neutr al or deleterious,
specially as these species separated very recently. Given that SVs
r e r ar el y conserv ed (i.e., typicall y pur ged ov er short time scales)
 67 , 68 ], and many of the SVs examined here were genotyped at
igh fr equencies, ther e is potential for common SVs to be investi-
ated for functional associations with traits or en vironments , thus
arr anting futur e scrutin y r egarding their contribution to ada p-

iv e e volution. Futur e studies ar e needed to test whether these
Vs contribute to ada ptiv e e volution. To assess their potential r ole
s barrier loci, breeding experiments could be emplo y ed. A prob-
em encountered here was the number of SVs within individu-
ls that could not be genotyped. Many statistical tests r equir e all
amples to be genotyped for all genetic variants, employing im-
utation to fill in missing genotypes. Ho w e v er, all curr ent impu-
ation pr ocesses ar e designed for SNPs ca ptur ed within ha plotype
locks. Statistical association programs that can incorporate SVs
re needed. With the decreasing cost and increasing accuracy of
ong-r ead sequencing, particularl y Oxford Nanopor e [ 69 ], futur e
tudies could use high-thr oughput long-r ead sequencing to over-
ome the limitations of short-read SV genotyping. Ho w ever, ad-
 ances in anal ysis softwar e ar e still a limiting constr aint for full y
nderstanding the contribution of SVs to ada ptiv e e volution and
peciation. 

ethods 

opulation sampling and sequencing 

ellow box ( E. melliodora ) and red ironbark ( E. sideroxylon ) are
losel y r elated eucal ypts of the box-gum gr assy woodland endan-
er ed ecological comm unity. These species ar e often found gr ow-
ng in sympatry or par a patry and widely hybridize throughout
heir ranges in southeastern Australia. Additionally, these Euca-
yptus species have been used in genetic adaptation and intro-
ression studies [ 70–72 ], contributing to the availability of large
enetic datasets for these species, making them ideal candidates
or our study. We collected 472 E. melliodora and 180 E. sideroxylon ,
ll samples being wild and undomesticated. Samples were envi-
 onmentall y str atified to ca ptur e major clines in climate-ada ptiv e
enomic v ariation acr oss the species’ distributions. GPS data wer e
ecorded for each sample (Fig. 4 ), and leaf material was dried in
ilica desiccant. 

Twenty 3-mm disc punches (UniCore, Qiagen) from each leaf
ample were placed in mini-tubes with a 3-mm ball bearing,
rozen with liquid nitrogen, and ground in a T issueL yser II (Qia-
en). Genomic DN A w as extracted using a 96-well plate column-
ased kit (Stratec Invisorb DNA Plant HTS 96 Kit/C), according
o the manufacturer’s instructions (Stratec SE). DN A w as quan-
ified using an Infinite M1000 PRO Tecan fluorescence microplate
 eader (Tecan Tr ading AG) and standardized to 1 ng/ μL, using a
iquid-handling r obot. Libr ary pr epar ation was performed using a

odified Illumina Nextera DNA Library Prep Kit w orkflo w, which
s available in Protocols.io and described in Jones et al. [ 73 ]. Li-
r aries wer e then quantified using GXII and Quant-iT and pooled
or equal r epr esentation. Prior to size selection, samples were con-
entrated using 2 × binding buffer and 100 μL Sera-Mag Speed-
eads Carboxylate-Modified Particles (Thermo Scientific). Size se-
ection was then performed on a Pippin Prep (Sage Science), for
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400- to 650-bp fr a gments. Samples wer e a gain concentr ated with 

2 × binding buffer and 100 μL Ser a-Ma g beads, then quantified 

using both a Qubit Fluorometer (Thermo Scientific) and Bioana- 
lyzer high-sensitivity DNA chips (Agilent Technologies). Whole- 
genome sequencing was performed on an Illumina NovaSeq 6000 
( RRID:SCR _ 016387 ), 150-bp paired-end sequencing, by Novogene 
(HK) Co., Ltd. 

Genome scaffolding 

We performed Hi-C scaffolding, grouping, ordering, and orienting 
of our pr e viousl y assembled E. melliodora genome into pseudo- 
c hr omosomes [ 31 ]. The initial draft was created by extracting 
and sequencing high-molecular w eight DN A [ 74 ] on the Oxford 

Nanopor e Tec hnologies MinION platform, and assembling with 

Canu as pr e viousl y described [ 75 ]. Subsequentl y, fr esh leav es wer e 
obtained from the reference tree, and a proximity ligation li- 
br ary for c hr omosome conformation ca ptur e was cr eated with 

a Phase Genomics Proximo Hi-C (Plant) Kit (version 4), accord- 
ing to the manufacturer’s instructions (document KT3040B). The 
restriction enzymes DpnII, HinFI, MseI, and DdeI were used to 
digest the genome. Sequencing was performed on an Illumina 
NovaSeq 6000,150 bp paired end sequencing. Hi-C scaffolding 
began by aligning all Hi-C reads to E. melliodora ’s contigs using 
bwa mem ( RRID:SCR _ 022192 ) [ 76 ] (v ersion: 0.7.17; par ameters: - 
5SP). Next, PCR duplicates were identified with Samblaster ( RRID: 
SCR _ 000468 ) [ 77 ] (v ersion: 0.1.26). Linka ge information ca ptur ed 

within Hi-C reads was assessed with Juicer ( RRID:SCR _ 017226 ) 
[ 78 ] (version: 1.6) and scaffolding was performed using 3D-DNA 

( RRID:SCR _ 017227 ) [ 79 ] (v ersion: 190,716; par ameter: -i 1000). Due 
to the high repeat content, Hi-C read coverage was highly vari- 
able and resulted in poor quality scaffolding. To account for vari- 
ability in read co verage , we ran 3D-DNA with “–editor-repeat- 
cov er a ge 5,” altering the misjoin detection threshold. After ini- 
tial scaffolding the Hi-C contact map was manually edited with 

Juicebox ( RRID:SCR _ 021172 ) [ 80 ] (version: 2.16). Briefly, the Hi-C 

contact heatmap was examined for incorr ectl y joined and sep- 
arated scaffolds. For example, scaffolds 2 and 3, and 4 and 5 
( Supplementary Fig. S1 ) were manually joined, as indicated by 
their boundaries (blue boxes) disa gr eeing with the surrounding 
heatma p. Additionall y, contigs displaying str ong off-dia gonal sig- 
nals were reviewed, and if the off-diagonal signal was stronger 
than the diagonal signal, they were relocated to the origin of the 
off-dia gonal signal. Pr e viousl y assembled contigs for E. sideroxylon 
[ 31 ] were scaffolded with Ra gTa g [ 81 ] (v ersion: v2.1.0) using syn- 
teny to our Hi-C scaffolded E. melliodora genome. 

Genome completeness was measured with BUSCO ( RRID:SCR _ 
015008 ) [ 82 ] (version 5) and long terminal repeat assembly index 
[ 83 ] (LAI). B USCO scor es genome completeness by identifying and 

reporting on the proportion of lineage specific highly conserved 

single-copy genes; more complete genomes have a high propor- 
tion of identified BUSCO genes. LAI identifies long terminal re- 
peat (LTR) sequences and reports on the proportion that are intact.
Within their publication, Ou et al. [ 83 ] established that LAI scores 
of < 10 correspond to draft genomes, scores of 10–20 indicate ref- 
erence genomes, and scores of 20 or higher r epr esent gold-quality 
genomes. 

Genome annotation 

Genomes were annotated for TEs using genome-specific, de novo 
r epeat libr aries cr eated with EDTA ( RRID:SCR _ 022063 ) [ 84 ] (v er- 
sion: 1.9.6) and Re peatMask er ( RRID:SCR _ 012954 ) [ 85 ] (version: 
4.1.1). Re peatMask er ad ditionally annotated our genomes for 
imple re peats. Re peat mask ed genomes were next annotated
or genes using BRAKER2 ( RRID:SCR _ 018964 ) [ 86 ] (version 2.1.6).
RAKER2 was run with ProtHint ( RRID:SCR _ 021167 ) [ 87 ] (ver-
ion2.6.0) and GeneMark-EP [ 87 ] (v ersion: 4). Pr otHint anal yzed
r aining pr oteins to determine their e volutionary distance to the
enome, aiding GeneMark-EP to train a gene detection model.
r aining pr otein sequences wer e obtained fr om the NCBI [ 88 ] and
ncluded all available transcripts for Myrtaceae (Taxonomy ID: 
931) and Arabidopsis thaliana (Taxonomy ID: 3702). 

Candidate genes were functionally annotated for eggNOG or- 
hogroup, COG category, GO term, KEGG term, and PFAM using
ggNOG-mapper [ 89 ] (version: 2.1.12; parameters: -m diamond 

itype CDS –tax_scope Viridiplantae). GO terms were extracted 

rom all eggNOG annotated genes and a GO term enrichment
nalysis performed using GOATOOLS: A Python library for Gene 
ntology analyses [ 90 ] (version: 1.3.11). 

ynteny and structural variation annotation 

har ed sequences wer e identified between genomes by align-
ent with NUCmer (par ameters: –maxmatc h -l 40 -b 500 -c 200),

rom the MUMmer ( RRID:SCR _ 018171 ) [ 91 ] (version: 3.23) toolset.
UCmer identifies all shared 40-mers between the 2 genomes 
nd joins all 40-mers within 500 bp into single alignments. Af-
er aligning the 2 genomes, MUMmer’s delta-filter (parameters: 
i 80 -l 200) tool r emov es all alignments < 200 bp and with an
dentity < 80%. A low sequence identity score (80%) was used
ue to the high heterozygosity of Eucalyptus genomes [ 71 ], and a
igher score may incorrectly filter out real alignments. Using SyRI
 RRID:SCR _ 023008 ) [ 92 ] (v ersion: 1.5), filter ed NUCmer alignments
er e anal yzed and subsequentl y genomes wer e annotated for

yntenic , in v erted, tr anslocated, duplicated, and not-alignable r e-
ions. Karyotype plot was created using plotsr [ 93 ] (version: 0.5.4).

All in versions , translocations , duplications , and unaligned re-
ions described by SyRI were genotyped for all 563 samples within
oth species using P ar a gr a ph [ 94 ] and our short-read alignments.

A 0/1/2 matrix was created for all genotyped SV within both
pecies and for all categories of SV. Using the R [ 95 ] function Cor,
he correlation between SVs of interest was calculated and visu-
lized with a heatmap. 

lignment and variant calling 

aw population sequences were trimmed (sequencing adaptors 
nd barcodes), quality filtered (average quality score < 20), and
er ged (ov erla pping r ead pairs wer e combined into single r eads)

sing Ada pterRemov al ( RRID:SCR _ 011834 ) [ 96 ] (version: 2.3.0).
enome cov er a ge was estimated for each sample, and samples
ith low cov er a ge ( < 10 ×) were removed. Quality filtered reads
ere next aligned to both reference genomes ( E. melliodora and E.

ideroxylon ) using bwa mem (parameters: -p). Samples with < 75%
lignment were then removed. Aligned reads for all remaining 
amples wer e v ariant called with BCFtools ( RRID:SCR _ 005227 ) [ 97 ]
v ersion: 1.12) mpileup (par ameters: MAPQ > 30, base quality > 15).
he default mutation rate (0.0011) was increased to 0.01, mak- 

ng variant calling more robust when calling low-coverage het- 
rozygous SNPs. Variant files were then merged, resulting in 4
atasets (r efer ence genome–population species): E. melliodora–E.
elliodor a , E. melliodor a–E. sideroxylon , E. sideroxylon–E. melliodora ,
nd E. sideroxylon–E. sideroxylon . 

ariant filtering 

sing BCFtools norm [ 97 ], multiallelic variants for each variant
ataset were decomposed into multiple single variants. Decom- 

https://scicrunch.org/resolver/RRID:SCR_016387
https://scicrunch.org/resolver/RRID:SCR_022192
https://scicrunch.org/resolver/RRID:SCR_000468
https://scicrunch.org/resolver/RRID:SCR_017226
https://scicrunch.org/resolver/RRID:SCR_017227
https://scicrunch.org/resolver/RRID:SCR_021172
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae029#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_015008
https://scicrunch.org/resolver/RRID:SCR_022063
https://scicrunch.org/resolver/RRID:SCR_012954
https://scicrunch.org/resolver/RRID:SCR_018964
https://scicrunch.org/resolver/RRID:SCR_021167
https://scicrunch.org/resolver/RRID:SCR_018171
https://scicrunch.org/resolver/RRID:SCR_023008
https://scicrunch.org/resolver/RRID:SCR_011834
https://scicrunch.org/resolver/RRID:SCR_005227
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osed variants were filtered, removing variants present in < 10%
f samples and with fewer than 20 supporting reads, within each
ataset using the BCFtools vie w. Variants wer e next recomposed,
ll r emaining m ultiallelic v ariants r ejoined, and eac h dataset fur-
her filtered to remove all indels and multiallelic SNPs [ 98 ]. 

High-quality, biallelic SNP datasets for eac h r efer ence genome
ere combined and a PCA performed with PCAngsd [ 99 ] (version:
.10). Visual inspection of PCA plots allo w ed identification and re-
oval of hybrids, outliers, and incorr ectl y labeled samples. 

NP phasing and recombination calculation 

efore computing ρ (estimated recombination rate) within our
 datasets, SNPs first r equir ed phasing. Phasing links each vari-
nt allele, placing them into haplotype blocks, separating ma-
ernal and paternal variants. As the linkage information pro-
ided by paired-end short reads is not capable of phasing all
NPs, a 2-step phasing process was used. First, individual sam-
les were extracted from species variant files into a single sam-
le variant file and using read alignments , SNPs , when possi-
le, were phased with WhatsHap ( RRID:SCR _ 025319 ) [ 100 ] (ver-
ion: 1.7). Second, partially phased sample variant files were re-
erged and the HMM phaser SHAPEIT4 ( RRID:SCR _ 024335 ) [ 101 ]

v ersion: 4.2.2) inferr ed ha plotypes and phased the r emaining
nphased SNPs. P ar ameters (–use-PS 0.0001 –mcmc-iter ations
b ,1p ,1b ,1p ,1b ,1p ,1b ,1p ,8 m –pbwt-depth 6 –sequencing) specified
or SHAPEIT4 were optimized by balancing maximum accuracy
nd runtime. At the completion of this 2-stage phasing approach,
ll SNPs for each dataset were phased. After phasing, ρ was cal-
ulated for each dataset using LDJump [ 102 ] (parameters: alpha
 0.05; version: 0.3.1), specifying a window size of 1 Kbp. LDJump
ade use of LDHat ( RRID:SCR _ 006298 ) [ 103 ] (version: 2.2a) to de-

rease runtime. 
As lo w-frequenc y SVs ar e unlikel y to hav e a detectable effect

n ρ, we considered only fixed SVs and excluded events shorter
han 2 Kbp, as ρ was calculated within 1-Kbp windows. We also
ssessed the impact of genes and transposons larger than 2 Kbp
n ρ. Prior to ρ calculations, we phased SNPs, initially achieving
0.56% linkage within haplotype blocks using read alignments,
nd subsequently completing phasing with an HMM-based ap-
r oac h. 

ixation index ( F ST ) 
o measure the amount of shared genetic diversity that exists
etween E. melliodora and E. sideroxylon , we combined SNPs for
oth populations under each reference and calculated the fixa-
ion index ( F ST ). The fixation index, calculated per SNP, scores the
mount of genetic differentiation between populations or species
nd r anges fr om 0 to 1, wher e 0 indicates no differ ence in allele
requencies and 1 indicates a fixed difference. In real-world us-
 ge, per SNP F ST v alues ar e typicall y far below 1, e v en in the case
f isolated populations and should be inter pr eted r elativ e to the
tudy [ 104 ]. Here we use them to quantify how similar, or dissim-
lar, all region types are between E. melliodora and E. sideroxylon .
iltered SNP datasets were combined for each reference genome,
nd subsequently F ST was calculated for each SNP using PLINK
 RRID:SCR _ 001757 ) [ 105 ] (version: 1.9). Per SNP, F ST values were av-
r a ged for each region of interest for further analysis. 

dditional Files 

upplementary Fig. S1. Hi-C scaffolding of E. melliodora ’s contigs
ith 3D DNA (par ameter: “–editor-r epeat-cov er a ge 5, -i 1000). Due
o a high repeat content, Hi-C read coverage is highly variable, re-
ulting in poor scaffolding. Hi-C contacts are visualized with Juice-
ox. 
upplementary Fig. S2. Manuall y cur ated, final, Hi-C contact map
f E. melliodora ’s contigs with 3D DNA (par ameter: “–editor-r epeat-
ov er a ge 5, -i 1000). Due to a high repeat content, Hi-C read cover-
 ge is highl y v ariable, r esulting in poor scaffolding. Hi-C contacts
re visualized with Juicebox. 
upplementary Fig. S3. SyRI annotations. 
upplementary Fig. S4. Synten y, r earr anged, and unaligned e v ent
izes. Duplications and unaligned r egions ar e unique to each
enome and as such are shown for both E. melliodora and E. siderox-
lon . 
upplementary Fig. S5. Ra w PC A plots . Left figure uses E. mel-

iodora as the r efer ence, and the right figure uses E. sideroxylon as
he r efer ence. 
upplementary Fig. S6. Clean PCA plot, E. Sideroxylon as r efer ence.
upplementary Fig. S7. E. melliodora recombination. 
upplementary Fig. S8. E. sideroxylon recombination. 
upplementary Table S1. E. melliodora Hi-C summary stats, pro-
uced by Juicer. 
upplementary Table S2. Status (fixed, absent, or pol ymor phic) of

nversions and translocations within both species and subsequent
D, SPP, or SP classification. 
upplementary Table S3. Shar ed structur al pol ymor phism gene
nric hment. The concentr ation of GO terms within genes found
n SSPs was tested against all gene GO terms. Significantly higher
r lo w er GO terms are listed. 
upplementary Table S4. Recombination rate estimates. Recom-
ination rates were calculated in 1-Kbp windows and averaged
cr oss c hr omosomes. Rates ar e shown with standard deviation.
hr omosomes color ed with darker gr een hav e higher av er a ge r e-
ombination rates. 
upplementary Table S5. Pairwise rho Tuk e y’s test P values. Green

ndicates a significant difference ( P ≤ 0.05). 
upplementary Table S6. Pairwise Fst Tuk e y’s test P values. Green

ndicates a significant difference ( P ≤ 0.05). 
upplementary Table S7. Pairwise SNP per kilobase Tuk e y’s test
 v alues. Gr een indicates a significant differ ence ( P ≤ 0.05). 

bbreviations 

 USCO: Benc hmarking Univ ersal Single-Copy Orthologs; COG:
lusters of Orthologous Groups; GO: Gene Ontology; HMM: hidden
arkov model; KEGG: Kyoto Encyclopedia of Genes and Genomes;

AI: long terminal repeat assembly index; MAPQ: mapping qual-
ty; NCBI: National Center for Biotechnology Information; P AV :
r esence/absence v ariant; PCA: principal component anal ysis;
D: structural divergence; SNP: single nucleotide polymorphism;
P: structural polymorphism; SSP: shared structural polymor-
hism; SV: structural variation; TE: transposable element. 
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