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Whole- Genome Approach Discovers 
Novel Genetic and Nongenetic Variance 
Components Modulated by Lifestyle for 
Cardiovascular Health
Xuan Zhou, PhD; Julius van der Werf, PhD; Kristin Carson-Chahhoud, PhD; Guiyan Ni, PhD;  
John McGrath, MD, PhD; Elina Hyppönen, PhD; S. Hong Lee , PhD*

BACKGROUND: Both genetic and nongenetic factors can predispose individuals to cardiovascular risk. Finding ways to alter 
these predispositions is important for cardiovascular disease prevention.

METHODS AND RESULTS: We used a novel whole- genome approach to estimate the genetic and nongenetic effects on—and 
hence their predispositions to—cardiovascular risk and determined whether they vary with respect to lifestyle factors such 
as physical activity, smoking, alcohol consumption, and dietary intake. We performed analyses on the ARIC (Atherosclerosis 
Risk in Communities) Study (N=6896–7180) and validated findings using the UKBB (UK Biobank, N=14 076–34 538). Lifestyle 
modulation was evident for many cardiovascular traits such as body mass index and resting heart rate. For example, alcohol 
consumption modulated both genetic and nongenetic effects on body mass index, whereas smoking modulated nongenetic 
effects on heart rate, pulse pressure, and white blood cell count. We also stratified individuals according to estimated genetic 
and nongenetic effects that are modulated by lifestyle factors and showed distinct phenotype–lifestyle relationships across 
the stratified groups. Finally, we showed that neglecting lifestyle modulations of cardiovascular traits would on average reduce 
single nucleotide polymorphism heritability estimates of these traits by a small yet significant amount, primarily owing to the 
overestimation of residual variance.

CONCLUSIONS: Lifestyle changes are relevant to cardiovascular disease prevention. Individual differences in the genetic and 
nongenetic effects that are modulated by lifestyle factors, as shown by the stratified group analyses, implies a need for per-
sonalized lifestyle interventions. In addition, single nucleotide polymorphism–based heritability of cardiovascular traits without 
accounting for lifestyle modulations could be underestimated.
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Cardiovascular diseases (CVDs) are the world’s 
number 1 cause of mortality, claiming an esti-
mated total of 17.9  million lives globally in the 

year 2016 alone—that is 31% of the total deaths 
in a single year.1 Managing CVD risk is therefore a 
top public health priority worldwide. It is estimated 
that between 20% and 60% phenotypic variability 
in CVD- related traits such as blood pressure and 

blood- clotting factors are attributed to additive ge-
netic variation (see ref.2–6), and the remaining 40% 
to 80%, commonly referred to as residual variation, 
could arise from random measurement errors and 
systematic nongenetic variation in the epigenome, 
transcriptome, metabolome, proteome, and microbi-
ome, which are involved in or interact with the trans-
lation of genotype to phenotype. 
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Given the substantial genetic and nongenetic con-
tributions to CVD risk, identifying ways that modify 
their effects can have important implications for CVD 
prevention. In fact, the idea of genotype–environment 
or genotype–covariate (G- C) interaction is well estab-
lished for traits such as body mass index (BMI).7–9 That 
is, genetic effects vary depending on environmental 
exposure, such as modifiable lifestyle covariates in-
cluding smoking, alcohol intake, and physical activity. 
Similar to G- C interaction to genetic variance, we re-
cently demonstrated that some nongenetic variance 
components can exist that change with respect to life-
style covariates, which we termed residual–covariate 
(R- C) interaction,10 that is, phenotypic variation with 
respect to lifestyle covariates that is independent of 
genetic effects. 

Understanding G- C and R- C interactions in the 
context of cardiovascular traits will not only translate 
into empowering public messages but also enable 
personalized lifestyle changes for CVD prevention 
according to individuals’ genetic and nongenetic in-
formation, as opposed to a one- fits- all approach that 
neglects individual differences. Aside from its practical 
implications, studying G- C and R- C interactions is also 
of theoretical value as it may offer some insight into 
missing heritability.11,12

To date, G- C interaction estimates for cardiovas-
cular traits are based on a limited number of genetic 

variants13–20; therefore they are likely underestimated. 
R- C interaction has been largely neglected, leading to 
potential confounding between G- C and R- C interac-
tions in the presence of genuine R- C interaction.10 In 
this article, using a novel whole- genome approach,10 we 
extend the current understanding of G- C and R- C in-
teractions on cardiovascular health. Instead of focusing 
on a few genetic variants with large phenotypic effects, 
our approach uses all common single nucleotide poly-
morphisms (SNPs) capturing variation across the entire 
genome, thereby providing genome- wide estimates 
of G- C interaction. Furthermore, our approach allows 
residual variance to vary with respect to a chosen co-
variate, thereby providing estimates of R- C interaction. 
By examining G- C and R- C interactions, we identify life-
style factors that modulate genetic and/or nongenetic 
effects on traits that are indicative of CVD risk.

METHODS
Simulated data used in this article can be obtained 
from the authors upon request. Our access to the 
ARIC (Atherosclerosis Risk in Communities) Study 
data was under the code phs000090, and access to 
the UKBB (UK Biobank) data was approved by the 
UKBB research ethics committee under the reference 
number 14 575.

Our analyses were based on the following 2 data 
sets: the ARIC Study and the UKBB. Because of the 
sensitive nature of the data collected for this study, re-
quests to access the data sets from qualified research-
ers may be sent to the database of Genotypes and 
Phenotypes (dbgap-help@ncbi.nlm.nih.gov) and the 
UKBB (access@ukbiobank.ac.uk). The ARIC Study 
was chosen for our primary analyses because it cov-
ers a wider range of cardiovascular traits than the latter 
data set. The UKBB, which has a larger sample size 
than the ARIC Study, was chosen as the validation set. 
The sample sizes for our analyses depended on the 
availability of phenotype and genotype data, which 
varied between studies and cross traits. For the ARIC 
Study, the sample sizes were between 6896 and 7180. 
For the UKBB, the sample sizes were between 14 076 
and 34 538.

Ethics Statement
The current study was approved by the University of 
South Australia Human Research Ethics Committee. 
The ARIC Study was approved by the institutional re-
view boards of all participating institutions, including 
the University of Minnesota, Johns Hopkins University, 
University of North Carolina, University of Mississippi 
Medical Centre, and Wake Forest University. The 
UKBB was approved by the North West Multi-centre 

CLINICAL PERSPECTIVE

What Is New?
• A novel whole-genome approach reveals that 

lifestyle factors can modulate genetic and non-
genetic effects on cardiovascular traits.

What Are the Clinical Implications?
• Lifestyle changes are relevant to cardiovascu-

lar disease prevention, but the associated car-
diovascular health benefits are greater for some 
individuals than others, implying a need for per-
sonalized lifestyle interventions.

Nonstandard Abbreviations and Acronyms

ARIC  Atherosclerosis Risk in Communities
G- C genotype–covariate
GREML genomic restricted maximum likelihood
MRNM multivariate reaction norm model
R- C residual–covariate
RNM reaction norm model
UKBB UK Biobank
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Research Ethics Committee (11/NW/0382). All ARIC 
Study and UKBB participants gave written informed 
consent. 

ARIC Study
The ARIC Study is a prospective study on the cause 
of atherosclerosis, with data collected from up to 5 
visits over 15 years from participants of 4 U.S. com-
munities (Forsyth County, NC; Jackson, MS; suburbs 
of Minneapolis, MN; and Washington County, MD) 
who were aged between 45 and 64 years in 1987 
to 1989.21 To maximize the sample size for our anal-
yses, we only used data from visit 1 that occurred 
from 1987 to 1989. 

Cardiovascular Traits

A total of 23 cardiovascular health- related traits were 
selected. Coagulation factors were determined in the 
ARIC Central Hemostasis Laboratory using previ-
ously published procedures.22 Plasma concentration 
of fibrinogen was measured by the thrombin–titration 
method, factor VII and factor VIII activity by clotting as-
says, and Von Willebrand’s factor antigen with an ELISA 
technique.23,24 P- R interval, Q- T interval, QRS interval, 
and Cornell voltage were derived from standard 12- 
lead electrocardiography.25,26 Sitting blood pressure 
(systolic and diastolic) was measured 3 times from the 
right arm and calculated using the average of the last 
2 readings. Pulse pressure was computed as the dif-
ference between systolic and diastolic blood pressure. 

Lifestyle Covariates

A total of 22 lifestyle covariates were selected. 
Smoking was indexed by “cigarette years of smok-
ing,” derived by multiplying the average number of 
cigarettes per day with the number of years smoked. 
Alcohol intake was indexed by usual ethanol intake 
from wine, beer, and hard liquor in grams per week. 
Dietary composition was assessed using a 66- item 
food- frequency questionnaire based on the Willett 
61- item questionnaire.27 The summary measures de-
rived included dietary lipid content, as indexed by the 
keys score28,29; daily dietary intake of fiber; monoun-
saturated, polyunsaturated, and saturated fatty acids; 
total fat carbohydrate, protein, potassium, calcium, 
and magnesium; total daily energy intake; and per-
centages of daily total energy intake from monoun-
saturated, polyunsaturated, and saturated fatty acids, 
total fat, carbohydrate, and protein. Physical activity 
was assessed in work, sports, and leisure domains 
using a modified Baecke questionnaire.30,31 Only the 
summary scores from the sports and leisure questions 
were used. The score for sports is a summary of the 
following: (1) the frequency, duration, and an assigned 

intensity of the sports reported by participants and (2) 
3 additional questions on frequency of sweating, gen-
eral frequency of playing sports, and a self- rating of 
the amount of leisure time physical activity compared 
with others of the same age.32 The score for leisure 
is a summary of the frequency of watching television 
(scored inversely), walking, bicycling, and walking/bik-
ing to work or shopping.32

Genotyping Data

The ARIC Study genotype data set contains 609 441 
SNPs that are genotyped for 8291 participants. We 
first selected autosomes from white European partici-
pants then applied standard quality control procedures 
to the selected data set. This involved (1) excluding 
SNPs with a genotyping rate less than 95%, ones that 
failed the Hardy–Weinberg test at the 0.0001 level or 
had a frequency less than 0.01; (2) excluding individu-
als who were missing 5% of genotype data; and (3) 
removing related individuals by excluding 1 person at 
random using a Bernoulli distribution with a selection 
probability of 0.5, from each pair that had an estimated 
genomic relationship33 greater than 0.05. Eventually, 
586 257 SNPs and 7513 individuals remained. Among 
these individuals, 6896 to 7180 have non missing phe-
notypic records to be used in the analyses of the 23 
traits.

UK Biobank
The UKBB contains health- related data from ≈500 000 
participants aged between 40 and 69 years who were 
recruited throughout the United Kingdom between 
2006 and 2010.34 For validation purposes, we only 
selected cardiovascular- related phenotypes and life-
style covariates that overlapped with the ARIC Study 
data set, which included BMI, waist- to- hip ratio, heart 
rate, white blood cell count, diastolic and systolic blood 
pressure, pulse pressure, high- density lipoprotein 
(HDL) cholesterol level, apolipoprotein a1 level, smok-
ing (pack years of smoking as proportion of life span 
exposed to smoking), alcohol intake (average weekly 
intake of all types), physical activity (metabolic equiva-
lent minutes for walking, moderate activity, vigorous 
activity, and all types35), and dietary composition (poly-
unsaturated fatty acid, saturated fatty acid, and total 
energy intake). 

Genotyping Data

The second release of the UKBB genotyping data 
set was used. Before quality control, the dataset 
contains 92  693  895 imputed autosomal SNPs of 
which genotypes are available for 488 377 individu-
als. We selected the third phase of the International 
HapMap project (HapMap3) SNPs from individuals 
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of white British ancestry only and applied the same 
quality control procedures as for the ARIC Study 
genotyping data set. Only HapMap3 SNPs were 
selected because they were shown to yield relia-
ble and robust estimates of SNP- based heritability 
and genetic correlation.36–38 In addition, ambiguous 
and duplicated SNPs and SNPs with an informa-
tion score (used to index the quality of genotype 
imputation) <0.6 were excluded. We computed the 
genomic relationship matrix of all observations and 
excluded population outliers, defined as individuals 
who have a score outside 3 SD on either the first 
or second principal component of the genomic re-
lationship matrix. From the remaining participants, 
only those who were part of the first release of 
the UKBB genotyping data (≈150  000 individuals) 
were selected for the purpose of reducing compu-
tational burden. This subset of participants there-
fore has 2 versions of imputed genotyping records, 
1 from each release, which enabled the computa-
tion of discordance rates between the 2 versions 
for each SNP across individuals and for each indi-
vidual across SNPs. SNPs and individuals who have 
a discordance rate >0.05 were excluded. Eventually, 
1 130 918 SNPs for 66 281 participants remained. 
Among these participants, only 14  076 to 34  538 
have phenotype data available for analysis. 

Statistical Analysis
Interaction Effects Detection

To estimate the variances of G- C and R- C interaction 
effects, we used multivariate reaction norm models 
(MRNMs),10 where the 2 types of interaction effects are 
treated as random. Details of MRNMs can be found in 
Data S1. Briefly, under this approach, the presence of 
a type of interaction effect is evidenced by its nonzero 
variance, and we declared nonzero variances of inter-
action effects when the full model, that is, a MRNM 
that assumes the presence of G- C and R- C interac-
tions, had a better fit than the null model, that is, a 
MRNM that assumes no G- C and R- C interactions. 
The full model is illustrated graphically in Figure 1, sim-
ulation studies used to calibrate our model comparison 
approach are documented in Data S2 (Figures S1–S4, 
Tables S1 and S2), and the justification for the model 
comparison approach is included in Data S3 (Figure 
S5, Tables S3 and S4). All model comparisons were 
based on likelihood ratio tests. For our primary analy-
ses, we applied the full model versus the null model 
comparison approach to the ARIC Study data set. To 
validate significant results that emerged from the ARIC 
Study data set, we repeated the analyses using the 
UKBB for cardiovascular traits where the 2 data sets 
overlap.

Of note, the full model versus the null model compar-
ison method on its own does not disentangle orthog-
onal G- C or R- C interaction effects. As documented 
in Data S3 (Figure S5, Tables S3 and S4), we initially 
considered a series of model comparisons to disen-
tangle orthogonal G- C or R- C interaction from overall 
interactions, but the power of this approach was low 
(< 11% for interaction effects of a small size; Data S3, 
Figure S5, Tables S3 and S4). Subsequently, we used 
the full model comparison versus the null model com-
parison to detect overall interactions and used param-
eter estimates from the full model to quantify G- C and 
R- C interactions. This strategy is based on 2 obser-
vations from our simulation studies (Data S2, Figures 
S1–S4, Tables S1 and S2). First, the full model versus 
the null model comparison in general had a high power 
of detecting any interaction type or both (>84% even 
for small interaction effects; Data S2, Figures S1–S4, 
Tables S1 and S2). Second, the full model consistently 
yielded unbiased variance component estimates under 
all simulation scenarios and parameter settings (Data 
S2, Figures S1–S4, Tables S1 and S2). Importantly, an 
interaction effect on its own—whether it is a G- C in-
teraction or an R- C interaction—has important clinical 
relevance to cardiovascular risk reduction (as shown 
later).

Phenotype Adjustment

Before fitting MRNMs, all selected cardiovascular traits 
were adjusted for demographic and lifestyle variables 
using linear models that regressed phenotypes on de-
mographic and lifestyle variables. The demographic vari-
ables included age, sex, education level, marital status, 
field center identification, and population structure, as 
measured using the first 15 principal components of the 
estimated genomic relationship matrix. All lifestyle vari-
ables described in the previous section were included for 
the adjustment. Depending on the cardiovascular trait, 
some additional adjustment factors were also included. 
For resting heart rate, blood pressure measures, elec-
trocardiography variables, and coagulation factors, addi-
tional adjustment factors included hypertension, defined 
as systolic blood pressure ≥140 or diastolic blood pres-
sure ≥90, and hypertension- lowering medication use. 
For total cholesterol and triglycerides levels, additional 
adjustment factors were hypertension, hypertension- 
lowering medication use, cholesterol- lowering medica-
tion within 2 weeks, and medications that secondarily 
affect cholesterol. As the second trait in the multivariate 
reaction normal model (see the second part of Equation 
1 in Data S1 where lifestyle covariate is on the left side 
of the equation), lifestyle covariates were also adjusted in 
the same way as the cardiovascular trait in the first part 
of Equation 1 in Data S1. 
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Lifestyle Covariates Versus Nongenetic 
Determinants of Cardiovascular Traits

Classically, lifestyle covariates have been considered 
nongenetic determinants of cardiovascular health. In this 
study, lifestyle covariates and nongenetic determinants 
are separate concepts and serve as distinct compo-
nents in our linear mixed reaction norm model (RNM). 
Specifically, nongenetic effects, in contrast to genetic ef-
fects, are referred to as effects of unknown factors that 
are not explicitly specified in our model and hence are 
partitioned as residual effects. On the other hand, life-
style covariates are known factors and hence are explic-
itly specified in our model as modulators of genetic and 
nongenetic effects. The distinction is shown in Figure 1.

Heritability Estimation

We also considered the consequence of neglecting 
G- C and R- C interactions on heritability estimates. 
Specifically, we estimated heritability of each trait using 
2 models, one that includes no interaction term at all, 
that is, the null model (that uses genomic restricted 
maximum likelihood [GREML] for parameter estima-
tion), and the other, referred to as the “interaction 
model,” that includes significant interaction terms that 
emerged from our primary analyses, and compared 
the estimates of the 2 models. To reduce computa-
tional burden, we used univariate RNMs as opposed 
to MRNMs. Details of univariate RNMs can be found 
in Data S1. 

Figure 1. A schematic illustrating the working of the linear mixed reaction norm model used to study genotype–covariate 
(G- C) and residual–covariate (R- C) interaction effects. 
Given phenotypic data of a main trait and a covariate, a reaction norm model that assumes G- C and R- C interactions (ie, a full 
model) decomposes the phenotypic variance of the main trait into genetic variance, residual variance, and their subcomponents that 
are modulated by the covariate, that is, variance of G- C interaction effects and variance of R- C interaction effects. The model then 
generates per- individual estimates of main genetic effects, G- C interaction effects, residuals, and R- C interaction effects, which can 
be used to compute estimated phenotypes of the main trait, denoted as ŷ. When stratified according to interaction effect estimates, 
ŷ and covariate shows different relationships across stratified groups, illustrating G- C and R- C interaction effects. For simplicity, 
only the key part of the linear mixed reaction norm model is shown. *Note that α1 and τ1 are n×1 vectors of interaction effects 
of 2 types, that is, G- C and R- C interactions, respectively, which serve to capture the heterogeneity of genetic variance and the 
heterogeneity of residual variance across different values of a given covariate. The 2 effects have different variance–covariance 
structures. Specifically, var(α1)=WWT

�
2
α1
∕m and var(τ1)= I�2

τ1
, where W is an n×m matrix that stores standardized genotypes of m 

single nucleotide polymorphisms for n individuals, noting that WWT is the genomic relationship matrix, and I is an n×n identity matrix.
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RESULTS
G- C and R- C Interactions
We had a total of 23 CVD traits, and for each trait we 
screened 22 available lifestyle covariates for G- C and 
R- C interactions. Of the 506 pairs of cardiovascular 
traits and lifestyle covariates, 214 yielded significant 
results at the 0.05 level, where the full model had a 
better fit than the null; after Bonferroni correction, 68 
pairs remained significant (Figure 2). Of these, 34 sur-
vived a sensitivity analysis, where we applied a rank- 
based inverse normal transformation to all traits and 
refit our models. In a further investigation, we noted 
that a large majority of the signals that were lost after 
the rank- based inverse normal transformation were 
from traits that have large skewness and kurtosis 

(Figure S6). Given that rank- based inverse normal 
transformation can control type I error rate when the 
normality assumption of MRNM is violated, as shown 
by the simulation results (Data S2, Figures S1–S4, 
Tables S1 and S2), the lost signals are likely to be 
spurious. Hence, in the following we focus on signals 
that remained after the rank- based inverse normal 
transformation.

Of the 34 significant pairs remaining after the rank- 
based inverse normal transformation, 17 were covered 
by the UKBB, allowing replication of the analyses con-
ducted in the ARIC Study. The majority of these sig-
nals, 14 of 17, were present in both data sets (Figure 2, 
right). The 3 signals lost in the replication were the 
modulating effects of physical activity on white blood 
cell count and of polyunsaturated fatty acid intake on 

Figure 2. Bubble plot of P values that identify lifestyle modulation of genetic and nongenetic effects on cardiovascular traits.
For each of the 23 cardiovascular traits (along the y axis) from the ARIC Study, 22 lifestyle covariates (along the x axis) were  screened 
separately for genotype–covariate and residual–covariate interactions by comparing a multivariate reaction norm model that allows 
genotype–covariate and residual–covariate interactions (ie, a full model) with a null model that assumes no genotype–covariate and 
residual–covariate interactions (left). The 506 null model versus full model comparisons were repeated after a rank- based inverse 
normal transformation was applied to all traits for a sensitivity analysis. Signals (after Bonferroni correction) for data before and after 
the transformation are color coded, as detailed in the Venn diagram (bottom right). A total of 34 signals (in orange) remained after 
the sensitivity analysis. Of these remaining signals, 17 were subject to validation using the UKBB, and their corresponding traits 
and lifestyle covariates are highlighted in blue. The results of the UK biobank validation are shown (top right). For both data sets, 
bubbles are proportional to P values based on data after the rank- based inverse normal transformation. Note the exceptions to the 
sample size displayed for BMI versus sfat1 (N=16 257) and for waist- to- hip ratio versus enrg (N=16 254) in the UKBB because of 
the limited availability of dietary intake data among the selected participants. alc1 indicates alcohol intake (g/week); alc2, alcohol 
intake (glass and pint/week); ARIC, Atherosclerosis Risk in Communities; BMI, body mass index; calc, calcium intake (mg/d); carb1, 
carbohydrate intake (g/d); carb2, energy from carb1 (%kcal/d); enrg, total energy intake (kcal/d); fibr, dietary fiber intake (g/d); HDL, 
high- density lipoprotein; keys, keys score; LDL, low- density lipoprotein; magn, magnesium intake (mg/d); met1, summed metabolic 
equivalent minutes/week for all activity; met2, metabolic equivalent minutes/week for walking; met3, metabolic equivalent minutes/
week for moderate activity; met4, metabolic equivalent minutes/week for vigorous activity; mfat1, monounsaturated fatty acid 
intake (g/d); mfat2, energy from mfat1 (%kcal/d); pa1, physical activity: leisure domain; pa2, physical activity: sports domain; pfat1, 
polyunsaturated fatty acid intake (g/d); pfat2, energy from pfat1 (%kcal/d); potas, potassium intake (mg/d); prot1, protein intake (g/d); 
prot2, energy from prot1 (%kcal/d); sfat1, saturated fatty acid intake (g/d); sfat2, energy from sfat1 (%kcal/d); Sig., significant; smk1, 
cigarette years of smoking; smk2, pack years adult smoking as proportion of life span exposed to smoking; tfat1, total fat intake 
(g/d); and tfat2, energy from tfat1 (%kcal/d); and UKBB, UK Biobank. 
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apolipoprotein a1. In addition, among the replicated 
signals, the results for physical activity varied slightly 
when metabolic equivalents were broken down into 
walking and moderate and vigorous activities, indicat-
ing that the modulating effects of physical activity may 
be conditional on the type of activity. The variance es-
timates from the full model for all signals from the ARIC 
Study and UKBB data sets are listed in Tables S5 and 
S6, respectively. In summary, our results indicate that 
lifestyle factors that include alcohol intake, smoking, 
physical activity, and dietary composition are highly 
relevant to interindividual variability in cardiovascular 
health and hence CVD risk.

For the 34 signals emerged from the ARIC Study, 
magnitudes of G- C and R- C interactions were fur-
ther examined by expressing estimated variances of 
the 2 types of interactions relative to total phenotypic 
variances, as shown in Figure  3. Four major obser-
vations emerged. First, G- C and R- C interactions are 
sizeable, which can account for up to 20% of pheno-
typic variance, highlighting the importance of lifestyle 

modulation to interindividual variability in cardiovascu-
lar health. For any given trait, the larger the variance 
estimate of interaction effects (denoted as ̂σ2

α1
 and ̂σ2

τ1
 

for G- C and R- C interaction effects, respectively), the 
greater the genetic or residual heterogeneity across 
different values of the lifestyle covariate, meaning the 
greater individual differences in the phenotype- lifestyle 
relationship; hence stronger interaction effects. Thus, 
variance estimates of the interaction effects can serve 
as measures of interaction effect size and hence are 
indicative of the relative importance of different life-
style covariates to a given trait. For example, the vari-
ance estimate of G- C interactions of HDL3 cholesterol 
level is larger for physical activity (abbreviated as pa2) 
than for alcohol consumption (alc1; see Figure 3, left).  
Hence, phenotypic changes in HDL3 cholesterol are 
larger with respective to physical activity than those 
with respect to alcohol consumption. Similarly, the 
magnitude of R- C interactions is larger for fibrinogen–
physical activity analysis than for fibrinogen- smoking 
analysis (smk1; see Figure  3, right). Standardizing 

Figure 3. Variance estimates of G- C and R- C interactions as percentages of total phenotypic variance. 
Estimates were derived by fitting a multivariate reaction norm model that included both G- C and R- C interactions (ie, a full model) 
to data without a rank- based inverse normal transformation. Dot plots on the top show distributions of estimates relative to the 
phenotypic variance of respective traits. Estimates are included only for signals that remained after a sensitivity analysis, where the full 
model was better than the null after Bonferroni correction on data after a rank- based inverse normal transformation. Top ten estimates 
are shown in bar charts below. alc1 indicates alcohol intake (g/week); BMI, body mass index; G- C, genotype–covariate; HDL, high- 
density lipoprotein; mfat1, monounsaturated fatty acid intake (g/d); pa1, physical activity: leisure domain; pa2, physical activity: sports 
domain; prot2, energy from protein intake (%kcal/d); R- C, residual–covariate; σ2

α1
, variance of G- C interaction effects; σ2

y
, phenotypic 

variance; σ2
τ
, variance of R- C interaction effects; sfat1, saturated fatty acid intake (g/d); sfat2, energy from saturated fatty acid intake 

(%kcal/d); smk1, cigarette years of smoking; and tfat2, energy from total fat intake (%kcal/d). 
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cardiovascular traits also makes across- traits compar-
isons meaningful for the same lifestyle covariate. For 
example, phenotypic changes in white blood cell count 
are more prone to the modulation of smoking than to 
the modulation of fibrinogen because the variance es-
timate of R- C interactions is larger from the white blood 
cell count–smoking analysis than from the fibrinogen–
smoking analysis.

Second, variance estimates of R- C interactions are 
in general larger than G- C interactions, indicating that 
lifestyle covariates play a greater role in modulating 
nongenetic effects on cardiovascular health than ge-
netic effects. Third, some variance estimates can be 
zero or even below zero. This is not totally unexpected, 
though, and is within the observed range of sampling 
errors from analyses of the simulated data (see Data 
S2, Figures S1–S4, Tables S1 and S2). Lastly, we noted 
a strong inverse correlation between variance esti-
mates of R- C and G- C interactions (Pearson r=−0.81). 
Such collinearity is likely attributed to the same covari-
ate being used for estimating G- C and R- C interac-
tions. Similar observations were noted in each replicate 
of simulated data, yet both variance estimates of G- C 
and R- C interactions were unbiased (see Data S2, 
Figures S1–S4, Tables S1 and S2). Thus, despite the 
collinearity between variance estimates, estimation ac-
curacy did not appear to be adversely affected. It is 
noted that the statistical power to separate G- C and 
R- C interactions can be low, and parameter estimates 
from models including only G- C or R- C interaction (re-
ferred to as “G- C only” and “R- C only” models) can be 
biased as shown in simulations (see Data S2, Figures 
S1–S4, Tables S1 and S2). Consequently, only the null 
model versus the full model comparison was chosen 
to indicate lifestyle modulation. Nonetheless, we com-
pared nested models, that is, a G- C only model and 
a R- C only model, with the full model to assess R- C 
interaction that is orthogonal to G- C interaction and 
G- C interaction that is orthogonal to R- C interaction, 
respectively (Table S7 for the ARIC Study and Table 
S8 for UKBB).

For the 14 signals that were first discovered in the 
ARIC Study and replicated in UKBB, we compared 
variance estimates of G- C and R- C interaction effects 
across the 2 data sets (Tables S5 and S6) and noted 
some similarities. Physical activity modulates both ge-
netic and nongenetic effects on heart rate and BMI. 
It also modulates genetic effects on HDL cholesterol 
level and nongenetic effects on waist- to- hip ratio. 
Alcohol consumption modulates both genetic and 
nongenetic effects on BMI, whereas smoking modu-
lates nongenetic effects on heart rate, pulse pressure, 
and white blood cell count. In addition, saturated fat in-
take modulates genetic effects on BMI, and total daily 
energy intake modulates nongenetic effects on waist- 
to- hip ratio.

The presence of G- C and R- C interactions indi-
cates heterogeneity of genetic and residual vari-
ance–covariance structures with respect to lifestyle 
covariates,39 which are depicted in Figure S7 for G- C 
interactions and in Figure S8 for R- C interactions. To 
explicitly illustrate G- C interactions, for each of the 8 
traits with the largest variance estimates of G- C inter-
action, we stratified observations into 3 groups—top, 
middle, and bottom—according to the per- individual 
estimate of G- C interaction effects, denoted as α̂1 (via 
the best linear unbiased prediction40,41). It is import-
ant to note that α1 in our model indicates the direc-
tion and effect size of the G- C interaction effect for 
each individual, and it is assumed to follow a nor-
mal distribution with the mean zero. For each trait, 
we defined the 3 groups as having an α̂1 below the 
20th percentile of the sample (bottom), between the 
40th and 60th percentiles (middle), and above the 
80th percentile (top), respectively, and plotted their 
phenotypic estimates, that is, α̂0+ ⋅α̂1, given their 
standardized values on the relevant lifestyle covari-
ate c (Figure  4). Irrespective of the trait, 3 groups 
showed distinct trajectories of phenotypic changes 
with respect to lifestyle covariate. Thus, significant 
G- C interactions indicated that there exist geneti-
cally distinct subpopulations with different pheno-
type–lifestyle relationships, and hence per- individual 
estimates of G- C interactions inform individual dif-
ferences, by genetic predisposition, in the extent to 
which one may benefit from lifestyle changes.

Importantly, G- C interactions potentially have im-
portant clinical relevance. To illustrate, we use the HDL 
cholesterol–physical activity analysis (with the largest 
variance estimates of G- C interaction effects) as an 
example. Figure  5A shows the predicted trajectories 
of phenotypic changes in HDL cholesterol level as a 
function of physical activity for individuals stratified 
by the percentile group of estimated G- C interaction 
(80–85%, 85–90%, 90–95%, and 95–100%). For peo-
ple with a G- C interaction estimate that falls between 
95% and 100% of the sample, every standard unit in-
crease in physical activity is associated with an aver-
age increase in HDL cholesterol level by 0.3 standard 
unit. This is about 4 times greater than that (0.07 stan-
dard unit) for individuals with an interaction estimate 
that falls between 80% to 85% of the sample. Given 
the association between HDL cholesterol increase and 
CVD risk reduction (eg, ref. 42), an increase in physical 
activity would be most beneficial to individuals in the 
group that falls between 95% to 100%.

Importantly, the per- individual estimate of α1 that 
we used for group stratification is an aggregate of 
G- C interactions over common SNPs of the whole 
genome, hence a genome- wide estimate of G- C in-
teraction. Therefore, individual differences in α̂1 would 
reflect systematic genetic variation, which would 
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be the most pronounced between the 2 extreme 
groups, that is, top and bottom. A further explora-
tion on pairwise genomic relationships for individuals 
within and between the 2 extreme groups revealed 
that the average genomic relationship within each 
group is greater than the grand average relationship 
of the entire data set, but the average between- group 
relationship is less than the grand average (Table S9). 
That is, compared with 2 randomly chosen individu-
als, a pair of within- group individuals is on average 
more genetically similar, but a pair of between- group 
individuals is on average more genetically distant. 
This observation holds for all 8 analyses with the 
largest variance estimates of G- C interaction (Table 
S9). Thus, the 2 extreme groups for these analyses in 
fact have systematic genetic differences.

To explicitly illustrate R- C interactions, for each of 
the 8 traits with the largest variance estimates of R- C 
interaction, we stratified participants into top, mid-
dle, and bottom groups according to per- individual 

estimate of R- C interaction effects, denoted as τ̂1, in 
the same way as for G- C interaction. Figure 6 shows 
estimated phenotypes, that is, α̂0+c ⋅ τ̂1, given stan-
dardized values on the relevant lifestyle covariate c 
for the 3 groups. Similar to G- C interaction, the 3 
groups show different phenotypic changes with in-
creasing lifestyle covariate values. Thus, similar to 
G- C interactions, R- C interactions indicate the pres-
ence of distinct subpopulations with different pheno-
type–lifestyle relationships, and hence per- individual 
estimates of R- C interactions inform individual differ-
ences in the extent to which one may benefit from 
lifestyle changes, which are relevant to clinicians 
and health professionals equally as G- C interaction 
estimates.

Figure 5B shows the predicted trajectories of phe-
notypic changes in white blood cell count as a function 
of cigarette smoking for individuals stratified by the per-
centile group of estimated R- C interaction (80–85%, 85–
90%, 90–95%, and 95–100%). For people with a R- C 

Figure  4. Estimated phenotypes as a function of lifestyle covariates for groups stratified by per- individual estimate of 
genotype–covariate interaction effect. 
Histograms on the left show distributions of per- individual estimates of a genotype–covariate interaction effect, that is, α1. The 
estimated phenotype of any given individual i is computed using the equation ŷi =α̂0i+ci α̂1i, where c denotes the lifestyle covariate 
value recorded for i, and α̂0i and α̂1i denote the estimated main genetic effect and genotype–covariate interaction effect for i. Only 
the first 4 traits with the largest variance estimate of genotype–covariate interaction effects are shown. All phenotypes and lifestyle 
covariates are standardized. HDL, high- density lipoprotein; and prot1, protein intake (g/d).
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interaction estimate that falls between 95% and 100% 
of the sample, every standard unit decrease in smoking 
is associated with an average reduction in white blood 
cell count by 0.99 standard unit. This is about 3 times 
greater than that (0.31 standard unit) for individuals with 
an interaction estimate that falls between 80% to 85% of 
the sample. Given the association between white blood 
cell count decrease and CVD risk reduction (eg, ref. 43), 
whereas all percentile groups would benefit from a re-
duction in smoking, the most benefit would be evident 
for individuals in the 95% to 100% group.

Although a genuine R- C interaction can be unbi-
asedly estimated as shown in the simulation (see Data 

S2, Figures S1–S4, Tables S1 and S2), the models 
used in this study do not inform how individual differ-
ences in τ̂1 arise because the fitted variance–covari-
ance structure for residual effects is an identity matrix 
(see Data S1). However, this problem will no longer 
exist in a repeated- measures design or if a nonidentity 
matrix is fitted for the variance–covariance structure of 
residual effects.10

Heritability
We showed previously that lifestyle modulation of ge-
netic and nongenetic effects, in forms of G- C and R- C 

Figure 5. Predicted trajectories of phenotypic changes as a function of lifestyle covariate by percentile group of estimated 
genotype–covariate interaction effects (A) and of estimated residual- covariate interaction effects (B). 
Percentile groups are color coded, and within each group faint lines are individuals and the dotted line is the group average. Both 
traits (shown on the y axis) and lifestyle covariates (shown on the x axis) are standardized such that the slope of a given trajectory 
indicates the number of standard unit change in the phenotype of a trait per standard unit change in a lifestyle covariate. A, The HDL 
cholesterol–physical activity analysis is chosen for illustration because it has the largest variance estimate of genotype–covariate 
interactions. The predicted phenotypes for an individual i are computed by substituting lifestyle covariate values, between −3 and 3, 
into the equation α̂0i+ciα̂1i, where c denotes lifestyle covariate, α̂0i and α̂0i denote the estimated main genetic effect and genotype–
covariate interaction effect for i, respectively. B, The white blood cell count–smoking analysis is chosen for illustration because it is the 
largest variance estimate of residual- covariate interactions. The predicted phenotypes for individual i are computed by substituting 
lifestyle covariate values, between −3 and 3, into the equation α̂0i+ciτ̂1i, where τ̂i denotes the estimated residual- covariate interaction 
effect for i. ave., average; and HDL, high- density lipoprotein.
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interactions, is ubiquitous and sizable for cardiovascular 
traits. To highlight the importance of incorporating life-
style modulation when estimating trait heritability, we 
compared SNP heritability estimates from 2 univariate 
RNMs (see Methods for details), one without any interac-
tion terms (ie, a null model) and the other with interaction 
terms (ie, an interaction model) based on results from 
the MRNMs shown previously (Figure  2). Null model 
estimates are essentially equivalent to conventional uni-
variate GREML estimates; hence they are referred to 
as GREML estimates thereafter. As a contrast, interac-
tion model estimates are thereafter referred to as RNM 
estimates. Figure 7 is a scatter plot of estimates from 
both the ARIC Study and UKBB data sets. If GREML 
and RNM estimates are identical, they are expected to 
align perfectly along the diagonal line. We found that 
estimates from the interaction model were, on average, 
slightly yet systematically larger than estimates from the 
null model (single- sided paired t=2.35, df=17, P=0.015). 
Thus, our results support the idea that phenotypic plas-
ticity39 can explain some missing heritability (eg, ref. 44).

Given that heritability is a function of genetic and 
residual variance, we further investigated the reason 
behind larger RNM heritability estimates by comparing 
GREML and RNM estimates of genetic and residual 
variance from both the ARIC Study and UKBB data 
sets (Figure  8). On average, GREML and RNM esti-
mates of genetic variance were not significantly differ-
ent, but GREML estimates of residual variance were 
significantly larger than RNM estimates (see mean 
and 95% CI in Figure  8; 2- sided 1- sample t=4.15, 
df=17, P=6.7×10−4). However, the results from the ARIC 
Study and UKBB data sets are somewhat different. 
In particular, some GREML estimates of genetic vari-
ance tend to be underestimated for the ARIC Study 
data, which is not evident for the UKBB data. This is 
likely attributed to the smaller sample size of the ARIC 
Study data than the UKBB data, which inevitably re-
sults in larger sampling errors for the estimates from 
the ARIC Study. Nonetheless, our results indicate that 
G- C and R- C interactions are primarily hidden in re-
sidual variance estimates in the null model; when they 

Figure 6. Estimated phenotypes as a function of lifestyle covariates for groups stratified by per- individual estimates of 
residual–covariate interaction. 
Histograms on the left show distributions of per- individual estimates of a residual–covariate interaction effect, τ1. The estimated 
phenotype of any given individual i is computed using the equation ŷi =α̂0 i+ci τ̂1 i, where c denotes the lifestyle covariate value 
recorded for i, α̂0i and τ̂1i denote the estimated main genetic effect and residual–covariate interaction effect for i, respectively. Only 
the first 4 traits with the largest variance estimate of residual–covariate interaction effects are shown. All phenotypes and lifestyle 
covariates are standardized.
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are explicitly estimated in an interaction model, resid-
ual variance estimates can be substantially reduced, 
thereby yielding higher SNP heritability compared with 
when these components are neglected. This is in line 
with our previous observation that residual variance is 
overestimated when fitting a null model to simulated 
data with genuine G- C or R- C interaction.10

DISCUSSION
In this study, we used a novel linear mixed model 
to detect and estimate components of genetic and 
nongenetic variance that change with respect to 

modifiable lifestyle covariates, termed as G- C and 
R- C interactions, in the context of cardiovascular 
health. Using simulations, we showed that for a sam-
ple size of ≈7500 observations, our method has suf-
ficient statistical power to detect genuine G- C and 
R- C interactions while keeping the false positive rate 
controlled. Applying our method to real data, for each 
of 23 cardiovascular traits selected from the ARIC 
Study data set, we screened for G- C and R- C in-
teractions using 22 available lifestyle covariates that 
covered smoking, alcohol intake, physical activity, 
and dietary composition. G- C and R- C interactions 
were found to be ubiquitous among cardiovascular 
health related traits, and for some traits, estimates 

Figure 7. SNP heritability estimates based on GREML and RNM. 
GREML and RNM estimates were derived by fitting a univariate reaction norm model including no interaction 
term (ie, null model) and one including 1 or more interaction terms (ie, interaction model), respectively. 
The diagonal is included to highlight the impact of neglecting interaction terms on SNP heritability 
estimates. Deviations above the diagonal indicate larger RNM estimates relative to GREML estimates. 
Note HDL2 cholesterol is excluded because of negative variance estimates. ARIC, Atherosclerosis Risk 
in Communities; BMI, body mass index; GREML, genomic restricted maximum likelihood; HDL, high- 
density lipoprotein; RNM, reaction norm models; SNP, single nucleotide polymorphism; and UKBB, UK 
Biobank. 

D
ow

nloaded from
 http://ahajournals.org by on M

arch 23, 2022

0.3 

~ 02 

E 
~ 
w 
g 
:c 
.l!! 
-~ 
I 
Cl.. 
z 
Cl) 

:a: z 
CI: 0.1 

0.0 

Pulse 

0.0 

BMr 

White ood Cell Count 

Waist-to-Hip Ratio 

Heart Rate~ 
e Ml 

White Blood Cell Count,e 

Factor VII 
Fibri gen 

., 
eart Rate 

Diastolic Blood Pressure 

H DL Cholesterol 

0.1 02 
GREML SNP Heritability Estimate 

L Cholesterol 

e ARIC 

e UKBB 

0.3 



J Am Heart Assoc. 2020;9:e015661. DOI: 10.1161/JAHA.119.015661 13

Zhou et al Lifestyle Modulation of Cardiovascular Phenotypes

were relatively large, accounting for up to 20% of the 
total phenotypic variance.

Among the 14 signals replicated in the UKBB, 
physical activity was found to alter both genetic and 
nongenetic effects on heart rate and BMI; genetic 
effects on HDL cholesterol level and nongenetic 
 effects on waist- to- hip ratio. Alcohol consump-
tion altered both genetic and nongenetic effects on 
BMI, whereas smoking altered nongenetic effects 
on heart rate, pulse pressure, and white blood cell 
count. In addition, saturated fat intake modified ge-
netic effects on BMI, and total daily energy intake 
modified nongenetic effects on waist- to- hip ratio. 
To explicitly illustrate G- C and R- C interactions, we 
stratified individuals according to the per- individual 

estimate of G- C and R- C interactions and showed 
that genetic and residual effects could take on dif-
ferent directions across groups. Although we did not 
identify any literature in the context of cardiovascular 
traits that examined R- C interaction, the evidence of 
G- C interaction in our studies is consistent with the 
previous literature (eg, refs. 7,9,13,16–20). Our study 
is novel in that G- C interactions were estimated using 
common SNPs across the entire genome, which are 
in contrast to estimates based on a single or a limited 
number of SNPs with large phenotypic effects in past 
studies.

Given the prevalence of lifestyle modulating effects, 
we also examined any potential consequence of ne-
glecting these effects on SNP heritability estimates. 

Figure 8. Genetic and residual variance estimates based on GREML and RNM. 
GREML and RNM estimates were derived by fitting a univariate RNM that included no interaction term (ie, null model) and one that 
included interaction terms (ie, interaction model), respectively. Lifestyle covariate(s) included in the interaction model are specified 
(left). Changes in genetic and residual variance estimates from the interaction model (ie, RNM estimates) relative to their respective 
estimates from the null model (ie, GREML estimates) are shown to highlight the impact of neglecting interaction terms (right). Deviations 
below 0 indicate underestimation by GREML, whereas deviations above 0 indicate overestimation by GREML. Traits are presented in 
the decreasing order of deviations for residual variance. Note changes in genetic variance estimates for pulse pressure and waist- to- 
hip ratio in the ARIC Study and for HDL cholesterol in the UKBB are obscured in the plot by data points for residual variance. HDL2 
cholesterol in ARIC was excluded because of the negative heritability estimates. alc1 indicates alcohol intake (g/week); alc2, alcohol 
intake (glass and pint/week); ARIC, Atherosclerosis Risk in Communities; BMI, body mass index; enrg, total energy intake (kcal/d); 
keys, keys score; GREML, genomic restricted maximum likelihood; HDL, high- density lipoprotein; met1, summed MET minutes/week 
for all activity; mfat1, monounsaturated fatty acid intake (g/d); pa1, Physical activity: leisure domain; pa2, physical activity: sports 
domain; pfat1, polyunsaturated fatty acid intake (kcal/d); prot2, energy from protein intake (%kcal/d); RNM, reaction norm model; 
sfat1, saturated fatty acid intake (g/d); sfat2, energy from saturated fatty acid intake (%kcal/d); smk1, cigarette years of smoking; 
smk2, pack years adult smoking as proportion of life span exposed to smoking; tfat2, energy from total fat intake (%kcal/d); and 
UKBB, UK Biobank.
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BMI 7,180 • • 
♦ ♦ ♦ Heart Rate 7,135 • • 

♦ ♦ HDL3 Cholesterol 7,122 • • 
♦ ♦ ♦ HDL Cholesterol 7,123 • • 

♦ Pulse Pressure 7,154 • 
♦ Factor VII 6,982 

♦ Diastolic Blood Pressure 7,154 • :• 
♦ ♦ ♦ ♦ White Blood Cell Count 7,115 ,. • 

♦ Apolipoprotein Al 7,123 • ,. 
♦ ♦ Flbrlnogen 7,129 

♦ ♦ Waist-to-Hip Ratio 1,1n ARIC t 
met1 --: 

afc2 smk2 
BMI 34,538 UKBB • • 

♦ White Blood Cell Count 33,591 • • 
♦ ♦ Waist-to-Hip Rat io 34,534 ~ • 
♦ ♦ Heart Rate 32,188 • • 
♦ HDL Cholesterol 30,216 ; 

♦ Pulse Pressure 32,187 

♦ Diastolic Blood Pressure 32,188 • • genetic variance 
• residual variance 

Mean (95% Cl) 

-0.20 -0.15 -0.10 -0.05 0 .00 0.05 0.10 0.15 0.20 

(GREML estimate - RNM estimate)/GREML estimate 
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Such negligence reduced SNP heritability estimates by 
a small yet significant amount. This reduction is primar-
ily attributed to the overestimation of residual variance. 
Yet genetic variance estimates are relatively robust to 
the negligence of significant lifestyle modulation. Our 
results suggest that current SNP heritability estimates 
for cardiovascular health- related outcomes, which 
commonly do not take into account modulating effects 
of lifestyle covariates, are likely underestimated.

Currently, several other approaches to G- C interac-
tion exist in the literature, and our approach is unique in 
several important ways. Compared with a fixed effects 
model approach (eg, ref. 45), a mixed- model approach 
such as ours could account for genetic covariance 
among individuals. Compared with StructLMM,8 which 
is a linear mixed- model approach that examines G- C 
interaction for 1 SNP at a time, our approach estimates 
the G- C interaction aggregated over SNPs for the entire 
genome, thereby providing genome- wide estimates 
of G- C interaction. The whole- genome approach to 
G- C interaction also sets this study apart from con-
ventional G- C interaction studies using a candidate 
gene approach that focus on only a few genetic vari-
ants with large phenotypic effects (eg, refs. 13–15). In 
addition, our approach extends other whole- genome 
approaches7,33,46 by allowing continuous, as opposed 
to categorical, lifestyle covariates to be modeled and 
by simultaneously modeling G- C and R- C interactions.

The prevalence of the sizable G- C and R- C inter-
action effects shown in our study not only reinforces 
the relevance of existing lifestyle- focused prevention 
programs for CVD prevention but also suggests that 
promoting lifestyle changes in a single direction may 
be ineffective or even inappropriate for some sub-
populations. Instead, to most effectively reduce ge-
netic and nongenetic predispositions to unfavorable 
cardiovascular phenotypes, lifestyle- focused inter-
ventions should be tailored to the individual on the 
basis of his or her relevant genetic and nongenetic 
information, supporting the rise of precision medicine 
in CVD to individualize treatments and preventions 
rather than assuming all individuals share a common 
pathophenotype.47,48

Of note, the variance–covariate structure fitted for 
the genetic effect in our MRNMs is a nonidentity ma-
trix constructed using genetic information, that is, a 
genomic relationship matrix. In effect, the SNP best- 
linear unbiased predictions derived from MRNMs can 
be used to predict how a person’s genetic risk would 
change with respect to a chosen lifestyle covariate 
given his or her genetic information. In contrast, the 
variance–covariance structure fitted for the residual ef-
fect in our MRNMs is an identity matrix. Consequently, 
R- C interactions estimated by our models have little 
use in the prediction of phenotypes. Further develop-
ment of MRNMs that incorporate a relationship matrix 

based on factors underlying residual variations, that is, 
a nonidentity matrix analogous to a genomic relation-
ship matrix, would be useful for the prediction, and it is 
currently under way in a separate study.

As for other approaches to G- C interaction for ob-
servational studies, the modulating effects of lifestyle 
covariates found in this study do not imply causality. 
Although randomized controlled trials are the gold 
standard, further studies using genetic methods such 
as Mendelian randomization can help determine causal 
influences. Furthermore, the MRNMs used in this arti-
cle are a specific case of the more general MRNMs 
(see ref. 10), where genetic and residual effects are ex-
panded to the first order of the chosen lifestyle covari-
ate. Higher order expansions may be necessary and 
could be employed in future studies where the vari-
ance–covariance structure for residual effects is a non-
identity matrix. However, increasing model complexity 
also increases notably the sample size requirement 
for robust estimation of model parameters. It should 
also be noted that the sample size in the ARIC Study 
for our primary analyses is relatively small (6896–7180 
participants), leading to less precise parameter esti-
mation compared with the UKBB validation analyses. 
This may explain some discrepancies observed in the 
model estimates between the 2 data sets. Smoking, 
for example, was shown to modulate cardiovascular 
health in both data sets, but the modulations mani-
fested primarily as R- C interactions in the ARIC Study 
analyses but as G- C interactions in UKBB analyses 
(see Tables S5 and S6). Independent data sets are re-
quired to determine the nature of the modulation ef-
fects of smoking on cardiovascular traits. Finally, in this 
article we only considered intermediate cardiovascular 
traits that are continuous in nature. The development 
of valid MRNMs for binary outcome is currently under 
way. Future applications of these MRNMs would help 
identify modulating lifestyle covariates that are directly 
relevant to CVD outcomes.

In summary, we found strong modulations from 
lifestyle covariates, including smoking, alcohol intake, 
physical activity, and dietary composition, for genetic 
and residual effects on phenotypes that are known to 
associate with CVDs. To illustrate these interactions, 
we showed that genetic and residuals effects—which 
may be interpreted as genetic and nongenetic pre-
disposition to CVD health risk, respectively—could 
change with respect to lifestyle change in different 
directions for different individuals. Our findings, there-
fore, reinforce the relevance of lifestyle changes to car-
diovascular health and highlight the need for individual 
considerations when designing lifestyle intervention 
programs to effectively reduce genetic and nonge-
netic predispositions to unfavorable cardiovascular 
phenotypes. Future investigations into specific ge-
netic and nongenetic factors that give rise to individual 
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differences in CVD health risk trajectories with respect 
to lifestyle changes are well warranted.
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Data S1. Extended description of statistical methods 
 

Here we provide a description of the statistical models used in the study that is more 

formal than the description in the main text. 

Multivariate Reaction Norm Model 

 

We used a novel whole-genome modelling framework, Multivariate Reaction Norm 
Models (MRNMs), to detect G-C and R-C interactions. MRNM is an extension of 
bivariate linear mixed models. In the simplest form of a bivariate linear mixed model, 
the main trait, y, and the covariate, c, for individual i, after adjusting for their respective 
fixed effects, 𝜇𝑦 and 𝜇𝑐, are simultaneously expressed as 

 

( 
𝑦𝑖 − 𝜇𝑦 
𝑐𝑖 − 𝜇𝑐

) = (
𝑔𝑖
𝛽𝑖
) + (

𝑒𝑖
휀𝑖
),                                                                       Equation 1 

 

Where 𝑔𝑖 ~ N(0, 𝜎𝑔
2) and 𝛽𝑖 ~ N(0, 𝜎𝛽

2) are genetic effects, which are aggregates of 

random effects of genome-wide SNPs on the main trait and on the covariate, 
respectively; 𝑒𝑖 ~ N(0, 𝜎𝑒

2) and 휀𝑖 ~ N(0, 𝜎𝜀
2) are residual effects, and both 𝑔𝑖 and 𝛽𝑖 

are independent from 𝑒𝑖 and 휀𝑖.  
 
MRNM extends Equation 1 by decomposing the random effects of the main traits into 
main effects and effects modulated by the covariate, which can be written as 
 

( 
𝑦𝑖 − 𝜇𝑦 
𝑐𝑖 − 𝜇𝑐

) = (
𝑔𝑖
𝛽𝑖
) + (

𝑒𝑖
휀𝑖
) = (

𝛼0𝑖 + 𝑐𝑖 · 𝛼1𝑖
𝛽𝑖

) + (
𝜏0𝑖 + 𝑐𝑖 · 𝜏1𝑖

휀𝑖
)          Equation 2  

 

where 𝑔𝑖  breaks into 𝛼0𝑖 + 𝑐𝑖 · 𝛼1𝑖 , 𝑒𝑖  into 𝜏0𝑖 + 𝑐𝑖 · 𝜏1𝑖  , 𝛼0𝑖  ~ N(0, 𝜎𝛼0
2 ), 𝛼1𝑖  ~ 

N(0, 𝜎𝛼1
2 ), 𝜏0𝑖 ~ N(0, 𝜎𝜏0

2 ) and 𝜏1𝑖 ~ N(0, 𝜎𝜏1
2 ). We use 𝑐𝑖 to denote the covariate for 

individual i, 𝛼0𝑖 for the main genetic effect on the main trait 𝑦𝑖 , 𝜏0𝑖 for the residual 

effect, 𝛼1𝑖  for the genotype-covariate interaction effect, and 𝜏1𝑖  for the residual-

covariate interaction effect. 
 
As shown in both equations, variance of the main trait and of the covariate are 

partitioned into two general sources, one of genetics (i.e., 𝜎𝑔
2 & 𝜎𝛽

2) and one of non-

genetics or residuals (i.e., 𝜎𝑒
2 & 𝜎𝜀

2). By modelling the main trait and the covariate 
simultaneously, the covariance between the main trait and the covariate, in forms of 
𝑐𝑜𝑣 (𝑔𝑖 , 𝛽𝑖) and 𝑐𝑜𝑣 (𝑒𝑖 , 휀𝑖), is accounted for in a MRNM. This is important given that 
the covariance between the main trait and covariate can sometimes be nontrivial and 
would have been neglected in univariate random regression models. More importantly 
though, the 𝑔𝑖 and 𝑒𝑖 terms are expanded in terms of 𝑐𝑖 in Equation 2, which offers 
opportunities to model the genetic and residual variances of the main trait as a function 
of the covariate. With this expansion, it is immediately clear that genetic variance 𝜎𝑔

2 

breaks into var(𝛼0 + 𝑐 · 𝛼1) and residual variance 𝜎𝑒
2 into var(𝜏0 + 𝑐 · 𝜏1), both of 

which vary with respect to the covariate. As such, MRNMs can estimate and detect 
genetic and residual variance heterogeneity due to the chosen covariate. A G-C 

interaction that underlies genetic variance heterogeneity is indicated by significant 𝜎𝛼1
2 , 
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and a R-C interaction that underlies residual variance heterogeneity is indicated by 

significant 𝜎𝜏1
2 . 

 
The MRNM shown in Equation 2 is referred to as the full model, which assumes and 
detects both genetic and residual variance heterogeneity with respect to the covariate. 
The full model can be simplified into other three major forms. Specifically, by setting 

both var(𝑐 · 𝛼1) and var(𝑐 · 𝜏1) to 0, the null model assumes no heterogeneity in either 

the genetic or the residual variance of the main trait with respect to the covariate. By 

setting var(𝑐 · 𝜏1) to 0, the G-C model assumes no R-C interaction and estimates the 

extent of genetic heterogeneity with respect to the covariate. Finally, by setting var(𝑐 ·
𝛼1) to 0, the R-C model assumes no G-C interaction and estimates the extent of 

residual heterogeneity with respect to the covariate.  
 
A detailed description of the variance-covariance structure assumed by MRNMs is 
provided below. Following Equation 1, the main trait, y, and the covariate, c, for 
individual i, after adjusting for their respective fixed effects, 𝜇𝑦  and 𝜇𝑐 , are 

simultaneously expressed as 

( 
𝑦𝑖 − 𝜇𝑦 
𝑐𝑖 − 𝜇𝑐

) = ( 
𝑦𝑖
∗
 

𝑐𝑖
∗ ) = (

𝑔𝑖
𝛽𝑖
) + (

𝑒𝑖
휀𝑖
) 

 

The variance-covariance matrix for N realizations of ( 
𝑦∗

 

𝑐∗
) can be expressed as 

 

𝑣𝑎𝑟 ( 
𝑦∗

 

𝑐∗
) =

[
 
 
 
 
𝐙1𝐀σ𝑔1

2 𝐙1
′ + 𝐙1𝐈σ𝑒1

2 𝐙1
′ ⋯ 𝐙1𝐀𝜎𝑔1,𝑁𝐙𝑁

′ +𝐙1𝐈𝜎𝑒1,𝑁𝐙𝑁
′ 𝐙1𝐀𝜎𝑔1,𝛽𝐙𝑐

′+𝐙1𝐈𝜎𝑒1,𝜀𝐙𝑐
′

⋮ ⋱ ⋮ ⋮
𝐙N𝐀𝜎𝑔1,𝑁𝐙1

′+𝐙N𝐈𝜎𝑒1,𝑁𝐙1
′ ⋯ 𝐙𝑁𝐀σ𝑔𝑁

2 𝐙N
′ + 𝐙𝑁𝐈σ𝑒𝑁

2 𝐙𝑁
′ 𝐙𝑁𝐀𝜎𝑔𝑁,𝛽𝐙𝑐

′+𝐙𝑁𝐈𝜎𝑒𝑁,𝜀𝐙𝑐
′

𝐙𝑐𝐀𝜎𝑔1,𝛽𝐙1
′+𝐙c𝐈𝜎𝑒1,𝜀𝐙1

′ ⋯ 𝐙𝑐𝐀𝜎𝑔𝑁,𝛽𝐙𝑁
′ +𝐙c𝐈𝜎𝑒𝑁,𝜀𝐙𝑁

′ 𝐙𝑐𝐀σ𝛽
2𝐙𝑐

′ + 𝐙𝑐𝐈σ𝜀
2𝐙𝑐

′
]
 
 
 
 

 

 

Where 𝐈 is an N x N identity matrix, A is the N x N genomic relationship matrix based on 

genome-wide SNP information, 𝐙i is the incident matrix for 𝑔𝑖 for i = 1, 2 …N, and 𝐙c is 

the incident matrix for 𝒄 . 

 
Prior to model fitting, we attempted to simplify the general MRNMs outlined above by 
reducing the number of free parameters for estimation. We estimated heritability of 
each lifestyle covariate in the ARIC dataset via univariate Genomic Restricted 
Maximum Likelihood (GREML), and found that all estimates were close to zero. Daily 
potassium intake was the only covariate with an estimate marginally different from 

zero (h2 = 0.08 ± 0.04). Subsequently, we simplified MRNMs by setting 𝜎𝛽
2  (i.e., 

genetic variance of the covariate) and its associated covariance terms, i.e., 𝑐𝑜𝑣 (𝛼0 , 𝛽) 
and 𝑐𝑜𝑣 (𝛼1 , 𝛽), to 0.  Unless specified otherwise, all MRNMs fitted to ARIC data in 
this paper are simplified MRNMs. 
 
For each pair of main trait and covariate, the null and full models were fitted and 

compared using a likelihood ratio test. For the simplified MRNMs, the test statistic, i.e., 

-2 log likelihood ratio, is assumed to have a chi-square distribution with five degrees 

of freedom. The alpha level was set at 0.05.  A significant p-value indicates the full 
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model has a better fit than the null, hence the presence of a G-C, R-C interaction, or 

both. Since the full model does not separate G-C and R-C interactions, we considered 

a model comparison strategy to separate the two. However, we show in Data S3 that 

this strategy can suffer from weak statistical power and biased estimation, which 

makes it an overall inferior method to the null versus full model comparison method 

for detecting G-C and R-C interactions. Therefore, our results are based on the latter.  

All model fitting for this paper was performed using MTG2. 

UKBB Validation 

 
To validate significant results found in the ARIC dataset, we repeated analyses using 
the UKBB for variables where the two datasets overlap. Since the UKBB has a larger 
sample size, hence greater statistical power, we explicitly estimated the genetic 
variance of the covariate when fitting a MRNM, rather than fixing this parameter at 
zero as for the ARIC dataset. Subsequently, the degree of freedom used for the 
likelihood ratio test that compares the full model with the null model was seven as 
opposed to five. Same as for the ARIC dataset, we estimated heritability of each UKBB 
trait using two URNMS (i.e., null and interaction models) and the inclusion of a 
covariate was based on MRNM results. 
 

Heritability Models 

 

We considered the consequence of neglecting G-C and R-C interactions on heritability 

estimates.  Specifically, we estimated heritability of each trait using two models, one 

that includes no interaction term at all, i.e., null model (also known as GREML), and 

the other that includes one or more interaction terms, i.e., interaction model, and 

compared estimates of the two models. To reduce computational burden, we used 

univariate reaction norm models (URNMs), as opposed to MRNMs. The null model in 

the univariate framework is essentially Equation 1 without the part that involves the 

covariate, ci. Using the same notation as Equation 1, the main trait for individual i, in 

a URNM can be written as: 

 

Null model:                       𝑦𝑖 − 𝜇𝑦 = 𝑔𝑖 + 𝑒𝑖 

The interaction model in the univariate framework expands gi and ei as functions of 

m1 and m2 covariates, respectively, where m1 + m2 ≥ 1. Using j to index covariate, the 

main trait for individual i in a URNM with interaction terms can be written as: 

Interaction model:           𝑦𝑖 − 𝜇𝑦 = 𝛼0𝑖 + ∑ 𝑐𝑖𝑗𝛼𝑖𝑗
𝑚1
𝑗=1 + 𝜏0𝑖 + ∑ 𝑐𝑖𝑘𝜏𝑖𝑘

𝑚2
𝑘=1  
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Data S2. Simulation studies 

 

Simulation Settings 

 

To facilitate data interpretation, we simulated phenotypic data with and without G-C 

and/or R-C interactions and assessed, using simulated data, whether MRNMs can 

produce unbiased parameter estimates, type I error rate and power of detecting G-C 

and R-C interactions. We purposely chose two sets of model parameter configurations 

that varied primarily in effect size for heritability, G-C and R-C interactions. One setting 

had large effect sizes, referred to as the ‘large-effects setting’, with a heritability of 0.5 

for both the main trait and the covariate and both 𝜎𝛼1
2  and 𝜎𝜏1

2 , which are indicative of 

G-C and R-C interactions, were set at 0.5. In contrast, the other setting had smaller 

effect sizes, referred to as the ‘small-effects setting’, with a heritability of 0.15 for the 

main trait, 0 for the covariate, and both 𝜎𝛼1
2  and 𝜎𝜏1

2  were set at 0.05. It is noted that 

the small-effects setting resembled more closely parameter estimates from real data 

analyses than the large-effects setting.  Thus, results of the former setting would be 

more informative about how well our models and the likelihood test for model 

comparisons perform for analysis of real data. 

 

Each parameter setting covered four scenarios—no G-C and R-C interactions (or the 

null), R-C interaction only, G-C interaction only, and both R-C and G-C interactions—

where the true data generating models were the four models described above.  Under 

each scenario, we simulated 100 replicates of phenotypic data (n = 7,513) of a main 

trait and a covariate, each based on 10,000 randomly chosen causal variants from the 

ARIC genotype data (see Table S1 for an overview). For every replicate, we fitted the 

full and null models and compared the fit of the two models using the abovementioned 

likelihood ratio test. For every scenario, we computed the proportion of replicates, out 

of 100, for which the full model has a better fit than the null. This proportion takes on 

different interpretations depending on the simulation scenario. It is an estimate of type 

I error rate when the true model is the null, whereas it is an estimate of statistical power 

in scenarios where the true model is other than the null. 

 

It is important to note that all simulating models above assume normally distributed 

random effects (e.g., genetic and residual effects). In effect, for any given covariate 

value, the main trait follows a normal distribution. This normality assumption however, 

is likely violated for many traits of the ARIC and UKBB datasets, which are 

characterised by substantially larger kurtosis and skewness than would be expected 

from data simulated under normality (Figure S1). Therefore, in addition to the large 

and small effects settings described above, we also simulated data with non-normal 

residuals drawn from Gamma distributions. We purposefully chose two sets of shape 

and scale parameters of Gamma distributions to represent large and small deviations 

from normality. For each of the non-normal settings, we had two scenarios: no G-C 

and R-C interaction (i.e., the null model is true) and G-C and R-C interactions (i.e., the 

full model is true), each with 100 replicates. We fitted the null and full models, which 

by definition all assume normality of random effects, to each replicate and 

subsequently assessed our model comparison method, in terms of type I error, power, 
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and parameter estimates. In the event of an inflated type I error rate, we applied a 

rank-based inverse normal transformation to the simulated data and refitted the 

models. We then assessed the effectiveness of the transformation on reducing false 

positive findings and its potential consequences on statistical power of the model 

comparison method and model parameter estimates.  

 

It is important to emphasize that our interaction models do not assume absolute 

normality of phenotype data, rather their conditional normality on the covariate. Thus, 

unless the true underlying model is the null, when phenotypic observations are 

collapsed across covariate values, the distribution of the collapsed data is not 

necessarily normal. In fact, in the presence of genuine G-C and/or R-C interactions, 

even when the model normality assumption is met, the simulated phenotype can have 

larger skewness and kurtosis than data simulated under the null model (see Figure 

S1). Thus, deviations from normality of a given set of phenotype data could arise from 

genuine G-C or R-C interaction. If they are mistaken as signs of violation of the model 

normality assumption, what would be the consequences of applying a rank-based 

inverse normal transformation for type I error rate, statistical power and model 

estimates? To answer these questions, we also applied the transformation to 

phenotype data simulated under normality (i.e., large & small effect parameter settings) 

and assessed its impact on type I error rate, statistical power and model estimates. 

 

Simulation Results 

 

When the model assumption of normality was met, the estimated type I error rate of 
the null versus full model comparison method was not inflated (0.04; see Table S2). 
Small and large phenotypic deviations from the normality inflated the type I error rate 
to 0.2 and 0.65, respectively. However, after a rank-based inverse normal 
transformation (RINT) of phenotypic data, the type I error rate was approximately 
controlled (0.05 and 0.07 for large and small phenotypic deviations from normality, 
respectively; Table S2), indicating that an RINT can effectively reduce false positive 
findings in face of violations of the normality assumption held by the MRNMs. 
 
The statistical power of the null versus full model comparison was estimated using 
data simulated under scenarios other than the null, i.e., G-C only, R-C only and both 
G-C and R-C interactions. We found that whether the normality assumption is met or 
not, the proportion of replicates for which the full model had a better fit than the null 
was at least 0.88 (Table S2), giving an estimated power above 88%. Applying an RINT 
did not affect the power in any scenario. 
 
For each simulation scenario, we compared parameter estimates from the full model 
with their corresponding true values. Figure S2 shows sampling distributions of full-
model parameter estimates based on 100 replicates for both large and small effects 
settings (in terms of heritability, G-C and R-C interactions; Table S1) when the model 
assumption of normality was met, and it indicates that the full model produced 
unbiased estimates of model parameters under all simulation scenarios. This 
observation holds even when the normality assumption was violated (Figures S3 & 
S4). In contrast, after applying an RINT, full-model estimates were biased for some 
model parameters (Figures S3 & S4). 
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In summary, our simulation results indicate that when the model assumption of 
normality is met, the likelihood ratio test that compares the full model with the null can 
detect G-C and/or R-C interaction at an acceptable type I error rate with a reasonable 
level of power. When the normality assumption is violated, however, type I error rate 
would be inflated, in which case an RINT of the phenotype data is an effective remedy 
without compromising statistical power. In situations where the normality assumption 
is not violated, a rank-based inverse normal transformation of the phenotype data 
would not adversely affect type I error rate and statistical power. In terms of parameter 
estimates, full-model estimates of heritability, G-C and R-C interactions are unbiased, 
regardless of whether or not the normality assumption is violated. Full-model estimates 
would however become biased after an RINT. Therefore, for analysis of real data, if 
the model assumption of normality is in doubt, rank-based inverse transformation 
should be applied to control type I error rate; and once a significant finding is declared, 
full model estimates of parameters from data without the transformation should be 
reported and interpreted. 
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Data S3. Alternative model comparison strategy 
 

Throughout the text we relied on the null versus full model comparison for detecting 

G-C and R-C interactions. An alternative and seemingly more logical strategy would 

be to derive the best model via model comparisons that involve reduced models, i.e., 

G-C only and R-C only models, in addition to the null and full models. Here we 

elaborate on this alternative strategy; and using results from simulations, we further 

show issues associated with this strategy. We conclude that the null versus full model 

comparison is a superior method, hence a logical choice for detecting G-C and R-C 

interactions. 

 

This alternative strategy uses result patterns from four model comparisons to conclude 

the best model out of five candidates (Table S3). Candidates considered were the null 

model, G-C interaction only model, R-C interaction only model, full model, and G-C or 

R-C interaction models. The last candidate is more of a situation than a model, where 

the model comparison method does not distinguish between G-C and R-C models, 

that is, model selection is inconclusive. It occurs when both G-C model and R-C model 

show a better fit than the null but a worse fit than the full, that is, G-C and R-C models 

are equally likely. Upon concluding the best model, the source of variance 

heterogeneity is immediately implied. For example, genetic variance heterogeneity 

(i.e., a G-C interaction) is declared, when either the G-C model or the full model is the 

best. In contrast, residual variance heterogeneity (i.e., a R-C interaction) is declared, 

when either the R-C model or the full model is the best. 
 

We applied this model selection strategy to simulated data from large- and small-
effects settings and evaluated how well the strategy can recover the true simulating 
model. The results are summarised in Table S4. The method correctly identified the 
null model for at least 97% of the simulated replicates, giving an estimated type I error 
rate of 0.03, which is well under the 0.05 target. However, statistical power—estimated 
by the proportion of replicates for which a true model other than the null is correctly 
identified—varied largely depending on effect size. For the large-effects setting, a true 
model other than the null was correctly identified for at least 91% of replicates, hence 
an estimated power of 0.91 and above. In contrast, for the small-effects setting, the 
estimated power was 0.04 at worst and 0.11 at best. This does not mean though, the 
model comparison method could not detect G-C and R-C interactions that are small in 
magnitude. Rather, for over 75% of replicates under this setting, the likelihood ratio 
test results were such that G-C and R-C models fit data equally well (see last column 
of Table S4).  In short, either when there are no genuine G-C and R-C interactions or 
when genuine G-C and R-C interactions are large in magnitude, the likelihood-ratio-
based method can discern the true underlying model at a high accuracy (>0.9).  
However, when genuine G-C and R-C interactions are small, it is unlikely that the 
method will uncover the true model. 
 

For each simulation scenario, we also compared parameter estimates from all four 
fitted models with their corresponding true values and noted that results are similar for 
the two parameter settings that vary in effect sizes.  Figure S5 shows results for the 
small-effects setting, which hold for the large-effects setting.  When the true underlying 
model was the null, regardless of which model was fitted, all parameter estimates were 
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unbiased.  In scenarios where the true model was other than the null, fitting the correct 
model produced unbiased estimates for all parameters.  However, in these scenarios, 
fitting a wrong model—that is, a model other than the true—could produce biased 
estimates for some parameters.  For example, fitting the null model to data with 
genuine G-C or/and R-C interactions produced larger estimates of the residual 

variance, i.e.,  𝛿𝜏0
2 , than its true value, by an amount similar to the set value of 𝛿𝛼1

2  

or/and 𝛿𝜏1
2 .  When fitting the G-C model to data with R-C interaction but no G-C 

interaction, estimates of 𝛿𝛼1
2  were larger than the true, i.e., 0, by an amount similar to 

the set value of 𝛿𝜏1
2 .  Likewise, when fitting the R-C model to data with G-C interaction 

but no R-C interaction, estimates of 𝛿𝜏1
2  deviated from the true by an amount similar to 

the set value of 𝛿𝛼1
2 .  However, fitting the full model, even when it was the wrong model, 

produced unbiased estimates for all parameters.  Thus, our simulation results indicate 
that model misspecification can result in biased estimates for some parameters 
depending on the simulation scenario, with the only exception of fitting the full model, 
which provides unbiased estimates for all parameters in all scenarios. 
 
In summary, the model selection strategy has a type I error rate under 0.05, but its 
power of recovering the true model is very low when effect sizes are small. 
Consequently, this strategy can result in an alarmingly elevated chance of concluding 
a wrong model, i.e., model misspecification, which could produce biased estimates for 
some model parameters. Therefore, for analysis of real data, where the true underlying 
model is unknown and effects sizes are likely small, this model comparison strategy 
is not useful to select the best model for identifying source of variance heterogeneity. 
In contrast, we showed in the main text that the null versus full model comparison 
method has an acceptable type I error rate and reasonable power when effect sizes 
are small. Even if the full model is not true, model estimates are not biased, which can 
be interpreted subsequently. Hence, the null versus full model comparison is a 
superior method to the alternative model comparison strategy. 
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Table S1. True parameter values of four simulation models under four settings. 

 

The top two settings are under the assumption that all random effects of the multivariate reaction normal 

models (MRNMs) for simulation are drawn from normal distributions. This assumption is relaxed for the 

bottom two settings, where residual effects, τ0 and τ1, are drawn from Gamma(k0, θ0) and Gamma(k1, 

θ1) with mean centred at zero, respectively. Each setting comprises four simulation models, which from 

the left to right are the null, full, G-C and R-C models. 
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A. Small effects under Normality B. Large effects under Normality 

Parameter NoG-C& R-C G-C& R-C G-Conly R-Conly Parameter No G-C& R-C G-C& R-C G-Conly R-Conly 

var(ao) 0.15 0.15 0.15 0.15 var(ao) 0.5 0.5 0.5 0.5 

var(n1) 0 0.05 0.05 0 var(a1) 0 0.5 0.5 0 

var(t0) 0.85 0.85 0.85 0.85 var( t 0) 0.5 0.5 0.5 0.5 

var(t 1) 0 0.05 0 0.05 var( t 1) 0 0.5 0 0.5 

var(P) 0 0 0 0 var(P) 0.5 0.5 0.5 0.5 

var(E) var(e) 0.5 0.5 0.5 0.5 

cov( ao, a 1) 0 0 0 0 cov(ao. n , ) 0 0.05 0.05 0 

cov(t0, t 1) 0 0 0 0 cov( t 0, t 1) 0 0.05 0 0.05 

cov(ao. p) 0 0 0 0 cov(ao, p) 0 0 0 0 

cov(n1, P) 0 0 0 0 cov(a1, P) 0 0 0 0 

cov(t0• E) 0 0 0 0 cov(t0, E) 0 0 0 0 

cov(t1• E) 0 0 0 0 cov(t 1• e) 0 0 0 0 

C. Small Deviation from Normality D. Large Deviation from Normality 

Parameter NoG-C& R-C G-C& R-C G-Conly R-Conly Parameter No G-C& R-C G-C& R-C G-Conly R-Conly 

var(ao) 0.15 0.15 0.15 0.15 var(ao) 0.15 0.15 0.15 0.15 

var(n1) 0 0.05 0.05 0 var(a1) 0 0.05 0.05 0 

var(t 0) 0.85 0.85 0.85 0.85 var(t0) 0.85 0.85 0.85 0.85 

var(t 1) 0 0.05 0 0.05 var(t 1) 0 0.05 0 0.05 

var(P) 0 0 0 0 var(P) 0 0 0 0 

var(E) var(e) 

cov(ao. a,) 0 0 0 0 cov(ao. n , ) 0 0 0 0 

cov(t0, t 1) 0 0 0 0 cov(,0• t ,) 0 0 0 0 

cov(ao, p) 0 0 0 0 cov(ao, p) 0 0 0 0 

cov(a, , p) 0 0 0 0 cov(a1, p) 0 0 0 0 

cov(t0• E) 0 0 0 0 cov( to, E) 0 0 0 0 

cov(t1• E) 0 0 0 0 cov(t 1• e) 0 0 0 0 

ko 2 2 2 2 ko 0.25 0.25 0.25 0.25 

80 0.65 0.65 0.65 0.65 80 1.84 1.84 1.84 1.84 

k, 2 2 k, 0.25 0.25 

8, 0.16 0.16 8, 0.45 0.45 



 
 

Table S2. Proportion of simulated replicates for which the full model had a better fit than the null 

under different simulation scenarios.  

 

Data of a main trait and a covariate were simulated using four models (1st column) under normality with 

large and small effects (in terms of heritability, Genotype-Covariate (G-C) and Residual-Covariate (R-

C) interactions) and under non-normality that resulted in large and small phenotypic deviations of the 

main trait from normality. Each simulation was repeated 100 times, resulting in 100 replicates of 

simulated data under each setting. For each replicate, the full model, which allows G-C and R-C 

interactions, and the null model, which assumes no G-C and R-C interactions, were fitted then 

compared using a likelihood ratio test. The model comparison was repeated after a rank-based inverse 

normal transformation was applied to the simulated data. 

  

Interpretation
no RINT * RINT no RINT RINT no RINT RINT no RINT RINT

No G-C & R-C 0.04 0.04 0.04 0.05 0.65 0.05 0.2 0.07 type I error

G-C only 1 1 0.93 0.94 0.81 1 0.84 0.99 power

R-C only 1 1 0.88 0.87 0.84 1 0.87 0.99 power

G-C & R-C 1 1 1 1 1 1 1 1 power

*RINT = Rank-based Inverse Normal Transformation

small deviation

Simulation under Normality Simulation under Non-Normality

Simulation 

model

large effects small effects large deviation
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Table S3. Overview of Model Selection Strategy.  

 
Each column shows the model comparison result pattern required to conclude a given candidate model 

is the best. Result patterns are mutually exclusive across the five candidates. A cross indicates a non-

significant p-value for a model comparison (i.e., the simpler model is better), whereas a tick indicates a 

significant p-value (i.e., the simpler model is worse). Comparisons that are not necessary for model 

selection are left as blanks. Note the pattern in the last column does not distinguish between Genotype-

Covariate (G-C) and Residual-Covariate (R-C) interactions, in which case model selection is 

inconclusive. 

  

Null G-C R-C Full G-C/R-C

Null vs. R-C ✕ ✓ ✓ ✓

Null vs. G-C ✕ ✓ ✓ ✓

R-C vs. Full ✓ ✕ ✓ ✕

G-C vs. Full ✕ ✓ ✓ ✕

Model 

Comparison

Candidate Model
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Table S4. Proportions of simulated replicates for which a given candidate model is chosen as 

the best under different simulation scenarios.  

 
Data were simulated under normality with large and small effects in terms of heritability, Genotype-

Covariate (G-C) and Residual-Covariate (R-C) interactions. Each scenario had 100 replicates of a main 

trait and a covariate.  For each replicate, four models were fitted and compared to select the best fitting 

one (see Table S3).  

 

Null G-C R-C Full G-C/R-C

No G-C & R-C 0.98 0 0 0 0.02

G-C only 0 0.93 0 0.07 0

R-C only 0 0 0.96 0.04 0

G-C & R-C 0 0.03 0.06 0.91 0

No G-C & R-C 0.97 0.01 0.02 0 0

G-C only 0.06 0.11 0.03 0.04 0.76

R-C only 0.1 0.01 0.09 0.05 0.75

G-C & R-C 0 0.05 0.14 0.04 0.77

Simulation 

Scenario

Candidate Model
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Table S5. Variance and covariance estimates from the full model for the 34 signals emerged from the atherosclerosis risk in communities study. 

 

All estimates are derived from analyses of data without a rank-based inverse normal transformation. Standard errors are in brackets. Other model parameters 

are omitted for simplicity. Signals replicated in the UK biobank are shaded. Note the UK biobank only has data available to validate 17 signals emerged from 

ARIC. 

Main Trait Lifestlye Covariate

Fibrinogen Cigarette years of smoking 4.0e+02(1.5e+02) -3.6e+02(1.5e+02) -7.9e+01(1.1e+02) 3.1e+03(1.6e+02) 2.9e+02(1.6e+02) 3.6e+02(1.2e+02)

Fibrinogen Physical activity:sports domain 4.2e+02(1.5e+02) -2.5e+02(1.3e+02) 1.5e+01(1.0e+02) 2.9e+03(1.6e+02) 3.6e+02(1.4e+02) -2.7e+02(1.1e+02)

Factor VII Physical activity:sports domain 1.0e+02(3.6e+01) 2.6e+00(3.1e+01) -1.5e+01(2.4e+01) 6.5e+02(3.8e+01) 7.2e+00(3.2e+01) -4.9e+01(2.5e+01)

BMI Alcohol intake (g/week) 2.9e+00(9.0e-01) 1.8e-01(6.9e-01) -1.1e+00(5.7e-01) 1.7e+01(9.3e-01) 5.7e-01(6.9e-01) -1.3e+00(6.0e-01)

BMI Physical activity:leisure domain 3.2e+00(9.2e-01) -6.7e-02(8.3e-01) 3.1e-01(6.3e-01) 1.7e+01(9.6e-01) 5.9e-01(8.7e-01) -1.3e+00(6.4e-01)

BMI Physical activity:sports domain 3.1e+00(9.1e-01) 1.1e-01(6.6e-01) 2.3e-02(5.8e-01) 1.7e+01(9.6e-01) 4.2e-01(7.1e-01) -2.5e+00(6.1e-01)

BMI Keys score 3.2e+00(9.2e-01) -4.0e-01(8.0e-01) -3.3e-01(6.2e-01) 1.7e+01(9.6e-01) 5.5e-01(8.3e-01) 1.5e+00(6.3e-01)

BMI Saturated fat intake (g/day) 3.1e+00(9.2e-01) 4.3e-01(8.7e-01) -2.5e-01(6.5e-01) 1.7e+01(9.6e-01) -5.8e-01(9.1e-01) 1.2e+00(6.6e-01)

BMI Energy from saturated fat (%kcal/day) 3.1e+00(9.2e-01) -1.2e+00(8.1e-01) -5.2e-01(6.2e-01) 1.7e+01(9.6e-01) 1.5e+00(8.5e-01) 1.6e+00(6.4e-01)

BMI Energy from total fat intake (%kcal/day) 3.1e+00(9.2e-01) -1.2e+00(8.2e-01) -3.4e-01(6.3e-01) 1.7e+01(9.6e-01) 1.5e+00(8.8e-01) 1.3e+00(6.4e-01)

Waist-to-Hip Ratio Cigarette years of smoking 3.0e-04(2.0e-04) 0.0e+00(2.0e-04) -1.0e-04(1.0e-04) 3.7e-03(2.0e-04) 0.0e+00(2.0e-04) -1.0e-04(1.0e-04)

Waist-to-Hip Ratio Physical activity:sports domain 3.0e-04(2.0e-04) -2.0e-04(1.0e-04) 0.0e+00(1.0e-04) 3.8e-03(2.0e-04) 3.0e-04(2.0e-04) -2.0e-04(1.0e-04)

Waist-to-Hip Ratio Total energy intake (kcal/day) 3.0e-04(2.0e-04) -1.0e-04(1.0e-04) 1.0e-04(1.0e-04) 3.9e-03(2.0e-04) 0.0e+00(2.0e-04) -3.0e-04(1.0e-04)

Waist-to-Hip Ratio Energy from protein intake (%kcal/day) 3.0e-04(2.0e-04) -1.0e-04(2.0e-04) -1.0e-04(1.0e-04) 3.8e-03(2.0e-04) 0.0e+00(2.0e-04) 2.0e-04(1.0e-04)

Pulse Pressure Cigarette years of smoking 8.0e+00(5.1e+00) -1.1e+00(5.5e+00) -2.7e+00(3.8e+00) 1.0e+02(5.5e+00) 6.3e+00(5.8e+00) 4.6e+00(4.1e+00)

Diastolic Blood Pressure Cigarette years of smoking 7.4e+00(3.2e+00) -7.3e+00(3.0e+00) -2.5e+00(2.2e+00) 6.4e+01(3.4e+00) 8.1e+00(3.2e+00) 4.4e+00(2.4e+00)

Heart Rate Cigarette years of smoking 1.3e+01(4.1e+00) -2.1e+00(4.3e+00) 1.9e+00(3.0e+00) 7.1e+01(4.3e+00) 6.8e+00(4.6e+00) -1.6e+00(3.1e+00)

Heart Rate Physical activity:leisure domain 1.3e+01(4.1e+00) -4.4e+00(3.4e+00) 4.9e+00(2.7e+00) 7.4e+01(4.3e+00) 5.9e+00(3.7e+00) -8.8e+00(2.8e+00)

Heart Rate Physical activity:sports domain 1.2e+01(4.0e+00) 1.1e+00(3.2e+00) 3.4e+00(2.6e+00) 7.7e+01(4.3e+00) -4.6e-01(3.4e+00) -6.7e+00(2.7e+00)

HDL2 Cholesterol Cigarette years of smoking -1.0e-04(1.8e-03) -3.0e-04(1.3e-03) 5.0e-04(1.1e-03) 4.0e-02(1.9e-03) 4.0e-04(1.4e-03) -3.1e-03(1.1e-03)

HDL2 Cholesterol Physical activity:leisure domain -6.0e-04(1.8e-03) -1.2e-03(1.7e-03) 2.0e-04(1.2e-03) 4.0e-02(1.9e-03) 1.7e-03(1.8e-03) 3.0e-03(1.3e-03)

HDL2 Cholesterol Carbohydrate intake (g/day) -5.0e-04(1.8e-03) -1.1e-03(1.4e-03) -4.0e-04(1.1e-03) 4.0e-02(1.9e-03) 1.2e-03(1.4e-03) -1.9e-03(1.1e-03)

HDL2 Cholesterol Total energy intake (kcal/day) -4.0e-04(1.8e-03) -1.5e-03(1.3e-03) -6.0e-04(1.1e-03) 4.1e-02(1.9e-03) 6.0e-04(1.4e-03) -9.0e-04(1.2e-03)

HDL2 Cholesterol Energy from protein intake (%kcal/day) -4.0e-04(1.8e-03) 1.6e-03(1.6e-03) -4.0e-04(1.2e-03) 4.1e-02(1.9e-03) -2.2e-03(1.6e-03) 2.4e-03(1.3e-03)

HDL3 Cholesterol Alcohol intake (g/week) 5.9e-03(2.7e-03) 1.0e-03(3.3e-03) -3.9e-03(2.1e-03) 5.5e-02(2.9e-03) -7.0e-04(3.3e-03) 5.9e-03(2.3e-03)

HDL3 Cholesterol Physical activity:sports domain 6.2e-03(2.7e-03) 5.0e-03(2.8e-03) 1.4e-03(2.0e-03) 5.1e-02(2.9e-03) -1.8e-03(2.9e-03) -2.4e-03(2.0e-03)

HDL Cholesterol Physical activity:sports domain 1.4e-02(6.1e-03) 1.4e-02(6.3e-03) 4.8e-03(4.3e-03) 1.2e-01(6.6e-03) -7.8e-03(6.4e-03) -7.0e-03(4.4e-03)

HDL Cholesterol Monounsaturated fatty acid intake (g/day) 1.3e-02(6.2e-03) 9.0e-04(5.2e-03) -2.0e-03(4.0e-03) 1.2e-01(6.5e-03) -9.0e-04(5.2e-03) -4.4e-03(4.2e-03)

HDL Cholesterol Energy from protein intake (%kcal/day) 1.3e-02(6.2e-03) -4.7e-03(5.9e-03) 1.0e-03(4.4e-03) 1.2e-01(6.6e-03) 5.8e-03(6.1e-03) 4.3e-03(4.5e-03)

Apolipoprotein AI Polyunsaturated fatty acid intake (g/day) 7.3e+03(3.4e+03) -3.4e+03(2.9e+03) 3.7e+03(2.1e+03) 6.8e+04(3.5e+03) 3.8e+03(2.9e+03) -7.4e+03(2.3e+03)

White Blood Cell Count Cigarette years of smoking 4.1e-01(1.2e-01) -6.6e-01(4.6e-02) -3.0e-01(8.0e-02) 3.0e+00(1.4e-01) 5.8e-01(7.4e-02) 8.6e-01(9.2e-02)

White Blood Cell Count Physical activity:leisure domain 5.7e-01(1.3e-01) 1.1e-01(1.3e-01) -7.1e-02(9.4e-02) 2.3e+00(1.4e-01) 1.2e-02(1.3e-01) -1.7e-01(9.5e-02)

White Blood Cell Count Physical activity:sports domain 5.5e-01(1.3e-01) 1.4e-01(1.3e-01) -1.3e-01(9.5e-02) 2.2e+00(1.4e-01) 9.1e-02(1.4e-01) -9.1e-02(9.7e-02)

White Blood Cell Count Keys score 5.5e-01(1.3e-01) 3.9e-03(1.2e-01) 1.5e-01(9.3e-02) 2.4e+00(1.4e-01) -1.0e-02(1.3e-01) 3.0e-03(9.3e-02)

var(  ) var(  ) cov(  ,  ) var(  ) var(  ) cov(  ,   )
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Table S6. Variance and covariance estimates from the full model for the UK Biobank dataset. 

 

All estimates are derived from analyses of data without a rank-based inverse normal transformation. Standard errors are in brackets. Other model parameters 

are omitted for simplicity. 

Main Trait Lifestlye Covariate

BMI Alcohol intake (glass & pint/week) 3.9e+00(2.0e-01) 4.4e-01(2.1e-01) -1.4e-01(1.4e-01) 1.3e+01(2.1e-01) 3.2e-01(2.3e-01) -4.4e-01(1.6e-01)

BMI MET minutes/week for walking 4.0e+00(2.0e-01) 5.7e-02(1.7e-01) -3.6e-01(1.3e-01) 1.2e+01(2.3e-01) 1.1e+00(1.9e-01) -1.2e+00(1.5e-01)

BMI MET minutes/week for moderate activity 3.9e+00(2.0e-01) -1.8e-01(1.4e-01) -1.9e-01(1.2e-01) 1.2e+01(2.2e-01) 1.4e+00(1.8e-01) -1.7e+00(1.5e-01)

BMI MET minutes/week for vigorous activity 4.0e+00(2.1e-01) 1.6e-01(5.7e-01) -1.6e-01(5.7e-01) 1.3e+01(2.2e-01) 5.8e-01(5.8e-01) -1.8e+00(5.7e-01)

BMI Summed MET minutes/week for all activity 3.9e+00(3.7e-01) -1.1e-01(1.9e-01) -2.7e-01(2.4e-01) 1.3e+01(2.1e-01) 1.2e+00(1.9e-01) -1.7e+00(2.2e-01)

BMI estimated saturated fat intake 3.9e+00(3.7e-01) 4.7e-01(3.6e-01) -9.6e-02(2.6e-01) 1.3e+01(3.8e-01) -2.1e-01(3.7e-01) 1.9e-01(2.6e-01)

Diastolic Blood Pressure1
Pack years adult smoking as proportion of life span exposed to smoking 1.6e+01(1.2e+00) 2.2e+00(9.5e-01) -1.8e+00(7.8e-01) 9.1e+01(1.3e+00) -2.7e+00(9.0e-01) 3.2e+00(8.5e-01)

Pulse Pressure1
Pack years adult smoking as proportion of life span exposed to smoking 2.5e+01(2.0e+00) -9.5e-01(1.8e+00) 2.1e+00(1.3e+00) 1.5e+02(2.2e+00) 2.4e-02(1.7e+00) 2.0e+00(1.5e+00)

Heart Rate Pack years adult smoking as proportion of life span exposed to smoking 2.0e+01(1.5e+00) 6.0e-01(1.5e+00) -6.7e-01(1.1e+00) 1.1e+02(1.8e+00) 2.1e+00(1.7e+00) 3.3e+00(1.2e+00)

Heart Rate MET minutes/week for walking 2.0e+01(1.5e+00) 7.5e-01(1.3e+00) 2.0e-01(9.7e-01) 1.1e+02(1.8e+00) 1.5e+00(1.5e+00) -3.8e+00(1.2e+00)

Heart Rate Summed MET minutes/week for all activity 2.0e+01(1.5e+00) -6.8e-01(1.3e+00) -6.6e-02(1.0e+00) 1.1e+02(1.7e+00) 4.7e+00(1.5e+00) -4.5e+00(1.2e+00)

Waist-to-Hip Ratio2
Pack years adult smoking as proportion of life span exposed to smoking 1.5e-01(1.1e-02) -3.6e-03(1.0e-02) -4.7e-03(7.7e-03) 8.5e-01(1.3e-02) 4.1e-02(1.2e-02) 3.4e-03(9.1e-03)

Waist-to-Hip Ratio MET minutes/week for moderate activity 1.5e-01(1.1e-02) 5.6e-03(1.0e-02) -1.2e-02(7.3e-03) 8.1e-01(1.3e-02) 2.9e-02(1.2e-02) -2.3e-02(9.6e-03)

Waist-to-Hip Ratio MET minutes/week for vigorous activity 1.5e-01(1.1e-02) 3.6e-03(1.0e-02) -1.3e-02(7.5e-03) 8.3e-01(1.2e-02) 1.8e-02(1.1e-02) -2.5e-02(9.4e-03)

Waist-to-Hip Ratio Summed MET minutes/week for all activity 1.5e-01(1.1e-02) 9.5e-03(1.0e-02) -1.1e-02(7.5e-03) 8.2e-01(1.3e-02) 1.9e-02(1.1e-02) -1.9e-02(8.9e-03)

Waist-to-Hip Ratio estimated total energy intake 1.8e-01(2.2e-02) -2.0e-02(2.0e-02) 5.0e-03(1.5e-02) 8.1e-01(2.3e-02) 3.3e-02(2.1e-02) -1.6e-02(1.5e-02)

White Blood Cell Count Pack years adult smoking as proportion of life span exposed to smoking 5.2e-01(4.2e-02) -2.7e-02(4.2e-02) -2.6e-02(3.0e-02) 3.0e+00(5.2e-02) 4.1e-01(5.4e-02) -1.4e-01(3.6e-02)

HDL Cholesterol MET minutes/week for moderate activity 2.8e-02(1.4e-03) 1.8e-03(1.3e-03) 5.0e-04(1.0e-03) 8.2e-02(1.6e-03) -2.4e-03(1.4e-03) 2.4e-03(1.2e-03)

HDL Cholesterol MET minutes/week for vigorous activity 2.8e-02(1.4e-03) 2.0e-04(1.2e-03) 1.0e-03(1.0e-03) 8.1e-02(1.5e-03) 7.0e-04(1.3e-03) -1.2e-03(1.1e-03)

HDL Cholesterol Summed MET minutes/week for all activity 2.8e-02(1.4e-03) 6.0e-04(1.2e-03) 5.0e-04(1.0e-03) 8.2e-02(1.5e-03) -5.0e-04(1.3e-03) 1.6e-03(1.1e-03)

1.Estimation for the multivariate analysis did not converge. Shown are estimates from an univariate analysis, where the full model had a better fit than the null.

2.Estimates are based on standardized data for this trait, due to small phenotypic variance, which resulted in rather small estimates of variance components in absolute terms.

var(  ) var(  ) cov(  ,  ) var(  ) var(  ) cov(  ,  )
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Table S7. P-values for comparisons between the full model and nested models for the 

atherosclerosis risk in communities study. 

 

Only shown for analyses where the full versus null model comparison was significant. Nested models 

include the null, G-C only and R-C only models. All analyses are based on data after a rank-based 

inverse normal transformation. 

  

Main Trait Lifestlye Covariate Null vs. Full GC vs. Full RC vs. Full

Fibrinogen Cigarette years of smoking 4.22E-10 1.83E-03 3.53E-01

Fibrinogen Physical activity:sports domain 3.27E-06 2.57E-03 2.52E-01

Factor VII Physical activity:sports domain 2.99E-05 7.19E-01 8.62E-01

BMI Alcohol intake (g/week) 2.60E-12 5.80E-02 1.83E-01

BMI Physical activity:leisure domain 9.04E-05 3.29E-01 8.69E-01

BMI Physical activity:sports domain 9.23E-39 3.30E-08 9.60E-01

BMI Keys score 1.28E-10 1.45E-01 9.73E-01

BMI Saturated fat intake (g/day) 5.44E-05 4.66E-01 9.75E-01

BMI Energy from saturated fat (%kcal/day) 6.24E-10 5.85E-02 3.72E-01

BMI Energy from total fat intake (%kcal/day) 4.09E-08 9.83E-02 3.48E-01

Waist-to-Hip Ratio Cigarette years of smoking 1.46E-09 1.34E-03 6.44E-01

Waist-to-Hip Ratio Physical activity:sports domain 5.55E-10 2.35E-05 2.26E-01

Waist-to-Hip Ratio Total energy intake (kcal/day) 2.00E-05 2.24E-01 4.35E-01

Waist-to-Hip Ratio Energy from protein (%kcal/day) 7.11E-07 6.29E-04 7.63E-01

Pulse Pressure Cigarette years of smoking 3.08E-06 2.50E-03 8.35E-01

Diastolic Blood Pressure Cigarette years of smoking 5.43E-05 3.52E-04 5.93E-02

Heart Rate Cigarette years of smoking 1.25E-06 1.37E-02 6.59E-01

Heart Rate Physical activity:leisure domain 1.01E-04 8.47E-03 2.05E-01

Heart Rate Physical activity:sports domain 3.74E-06 6.20E-06 4.18E-01

HDL2 Cholesterol Cigarette years of smoking 1.70E-09 4.02E-02 6.94E-01

HDL2 Cholesterol Physical activity:leisure domain 2.73E-12 1.32E-01 5.20E-01

HDL2 Cholesterol Carbohydrate intake (g/day) 1.68E-07 3.42E-01 5.77E-01

HDL2 Cholesterol Total energy intake (kcal/day) 2.40E-08 2.45E-01 4.50E-01

HDL2 Cholesterol Energy from protein (%kcal/day) 3.69E-08 7.33E-02 6.54E-01

HDL3 Cholesterol Alcohol intake (g/week) 3.31E-05 2.45E-02 1.88E-01

HDL3 Cholesterol Physical activity:sports domain 9.68E-06 1.16E-03 1.52E-01

HDL Cholesterol Physical activity:sports domain 8.85E-06 9.91E-05 4.71E-02

HDL Cholesterol Monounsaturated fatty acid intake (g/day) 3.17E-05 4.31E-01 9.37E-01

HDL Cholesterol Energy from protein (%kcal/day) 4.71E-06 7.86E-02 6.00E-01

Apolipoprotein AI Polyunsaturated fatty acid intake (g/day) 2.94E-05 2.14E-02 2.13E-01

White Blood Cell Count Cigarette years of smoking 2.00E-65 2.53E-21 1.25E-08

White Blood Cell Count Physical activity:leisure domain 7.62E-07 5.19E-01 4.36E-01

White Blood Cell Count Physical activity:sports domain 9.62E-05 1.72E-01 3.82E-01

White Blood Cell Count Keys score 7.56E-05 8.37E-01 2.32E-01
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Table S8. P-values for comparisons between the full model and nested models for the UK 

Biobank. 

 

Only shown for analyses where the full versus null model comparison was significant. Nested models 

include the null, G-C only and R-C only models. All analyses are based on data after a rank-based 

inverse normal transformation. 

Main Trait Lifestlye Covariate Null vs. Full GC vs. Full RC vs. Full

BMI Alcohol intake (glass & pint/week) 1.19E-14 0.00E+00 0.00E+00

BMI MET minutes/week for walking 1.49E-16 4.21E-04 6.82E-02

BMI MET minutes/week for moderate activity 2.05E-29 6.34E-13 8.26E-01

BMI MET minutes/week for vigorous activity 1.01E-46 8.91E-20 4.74E-01

BMI Summed MET minutes/week for all activity 5.51E-47 3.16E-15 2.71E-01

BMI estimated saturated fat intake 6.44E-03 6.37E-01 3.85E-01

Diastolic Blood Pressure Pack years adult smoking as proportion of life span exposed to smoking 3.03E-04 1.75E-04 1.08E-02

Pulse Pressure Pack years adult smoking as proportion of life span exposed to smoking 7.13E-06 8.66E-02 4.10E-01

Heart Rate Pack years adult smoking as proportion of life span exposed to smoking 3.44E-38 5.01E-05 3.92E-01

Heart Rate MET minutes/week for walking 3.81E-02 6.38E-02 6.96E-01

Heart Rate Summed MET minutes/week for all activity 3.62E-02 1.05E-01 9.20E-01

Waist-to-Hip Ratio Pack years adult smoking as proportion of life span exposed to smoking 5.35E-87 6.21E-15 7.46E-01

Waist-to-Hip Ratio MET minutes/week for moderate activity 9.00E-04 2.07E-01 2.21E-01

Waist-to-Hip Ratio MET minutes/week for vigorous activity 1.13E-04 2.46E-01 3.12E-01

Waist-to-Hip Ratio Summed MET minutes/week for all activity 2.23E-04 4.45E-01 2.65E-01

Waist-to-Hip Ratio estimated total energy intake 2.40E-02 1.81E-02 1.18E-01

White Blood Cell Count Pack years adult smoking as proportion of life span exposed to smoking 1.25E-138 3.58E-21 6.04E-01

HDL Cholesterol MET minutes/week for moderate activity 8.01E-08 2.77E-01 3.27E-01

HDL Cholesterol MET minutes/week for vigorous activity 4.37E-04 5.01E-01 7.39E-01

HDL Cholesterol Summed MET minutes/week for all activity 5.91E-06 7.65E-01 6.91E-01
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Table S9. Genomic relationship within and between top and bottom groups, stratified by G-C interaction estimate, relative to the grand mean genomic 

relationship. 

 

Δ%
1

p-value
2

Δ% p-value Δ% p-value

HDL Cholesterol Physical activity:sports domain 63.4 9.47E-72 77.0 1.46E-105 -69.5 3.44E-165

HDL3 Cholesterol Physical activity:sports domain 64.3 2.44E-73 67.4 3.47E-81 -66.0 2.72E-148

White Blood Cell Count Physical activity:sports domain 62.4 2.81E-69 61.4 5.66E-67 -64.0 3.12E-139

HDL2 Cholesterol Energy from prot1 (%kcal/day) 84.3 2.20E-125 87.8 4.48E-136 -82.6 4.90E-233

White Blood Cell Count Physical activity:leisure domain 67.3 5.40E-81 66.1 2.03E-77 -65.2 4.46E-145

BMI Saturated fatty acid intake (g/day) 66.1 4.45E-80 94.0 1.40E-148 -76.3 5.44E-201

HDL3 Cholesterol Alcohol intake (g/week) 55.1 1.18E-54 57.0 1.71E-58 -56.5 1.72E-109

Heart Rate Physical activity:sports domain 55.2 1.72E-54 53.2 6.04E-52 -54.1 1.72E-101

1. Δ% = (group mean  - grand mean)/grand mean x 100%; 2. P-values are for two-sided independent t-tests that compare group means with the grand mean

Main Trait Lifestyle
Within Top Group Within Bottom Group Between Top & Bottom Groups
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Figure S1. Skewness (top) and kurtosis (bottom) of cardiovascular traits from the atherosclerosis 

risk in communities study (ARIC) and UK biobank (UKBB). 

 

In each panel, categories along the y axis from the top to bottom are traits from the UK biobank, traits 

from the ARIC study, traits (100 replicates) simulated from the null model, from the full model with large 

and small effect sizes, and from the full model with non-normal residuals that result in large and small 

phenotypic deviations from normality. The last five categories are included as references to indicate 

expected skewness and kurtosis when the model assumption of normality is and is not met. 
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Figure S2. Sampling distributions of parameter estimates from the full model. 

 

 

Data for a main trait and a covariate were simulated using 4 multivariate reaction norm models under 2 

parameter settings for each model, which together gave arise to 8 combinations of simulation scenarios. 

The four models were no Genotype-Covariate (G-C) and Residual-Covariate (R-C) interactions (i.e., a 

null model), G-C interaction only (i.e., a G-C model), R-C interaction only (i.e., a R-C model), and both 

G-C and R-C interactions (i.e., a full model). The two parameter settings were large and small effect 

sizes in terms of heritability, G-C and R-C interactions. Each simulation was repeated 100 times, 

resulting in 100 replicates of simulated data under each scenario. Parameter estimates were obtained 

from fitting the full model. Shown distributions are for model parameters (i.e., variance & covariance 

terms) pertaining to the main trait only. True parameter values are shown in dots and means of sampling 

distributions in diamonds. 
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Figure S3. Impact of rank-based inverse normal transformation on parameter estimates when the 

normality assumption is violated. 

 

 

Data for a main trait and a covariate were simulated using a multivariate reaction norm model that 

included both Genotype-Covariate and Residual-Covariate interactions (i.e., a full model) under two 

parameter settings, where residuals of the main trait were drawn from distributions that deviated from 

a normal distribution to different degrees (i.e., small vs. large deviation from normality). Each simulation 

was repeated 100 times, resulting in 100 replicates of simulated data for each setting. Parameter 

estimates were obtained from fitting a full model—that assumes normality of all random effects including 

residuals—to the simulated data before and after a rank-based inverse normal distribution (‘original’ vs. 

‘invnorm’). Shown distributions are for model parameters (i.e., variance & covariance terms) pertaining 

to the main trait only. True parameter values are shown in dots. 
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Figure S4. Impact of rank-based inverse normal transformation on parameter estimates when 

normality assumption is met. 

 

Data for a main trait and a covariate were simulated using a multivariate reaction norm model that 

included both Genotype-Covariate (G-C) and Residual-Covariate (R-C) interactions (i.e., a full model) 

under two parameter settings that varied in effect sizes in terms of heritability, G-C and R-C interactions. 

In each setting, all random effects were drawn from normal distributions. Each simulation was repeated 

100 times, resulting in 100 replicates of simulated data for each setting. Parameter estimates were 

obtained from fitting a full model—that assumes normality of random effects—to the simulated data 

before and after a rank-based inverse normal distribution (‘original’ vs. ‘invnorm’). Shown distributions 

are for model parameters (i.e., variance & covariance terms) pertaining to the main trait only. True 

parameter values are shown in dots. 
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Categories from left to right in each panel are all traits (labelled as “all”), trait that lost one or more signals after a rank-based inverse normal transformation 

(“loser”), and traits that still had one or more signals after the transformation (“survivor”). Point size is proportional to the count of signals. To reduce overlaps, 

points are jittered randomly in the horizontal direction. Note that a trait can be both a loser and a survivor. 

Figure S6. Skewness (left panel) and kurtosis (right) of cardiovascular traits from the ARIC dataset by survivorship of rank-based inverse normal 
transformation. 
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Figure S7. Estimated genetic covariance with respect to lifestyle covariate. 

 
Both x and y coordinates of each plot cover three standard deviations from the mean of a given lifestyle covariate. The horizontal plane thus represents pairwise 

combinations of lifestyle covariate values. The corresponding genetic covariance matrix of these combinations, estimated from the full model, is shown as the 

surface in each plot. The lower triangular part of each matrix, which is identical as the upper triangular part, is removed for simplicity. Diagonal entries of each 

matrix, shown as the intersection of the surface with the diagonal plane, are estimated genetic variances. Only traits with the first eight largest variance estimates 

of Genotype-Covariate interaction (see Figure 2 left) are shown. Arrows point to higher values. 
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Figure S8. Estimated residual covariance with respect to lifestyle covariate. 

 
Both x and y coordinates of each plot cover three standard deviations from the mean of a given lifestyle covariate. The horizontal plane thus represents pairwise 

combinations of lifestyle covariate values. The corresponding residual covariance matrix of these combinations, estimated from the full model, is shown as the 

surface in each plot. The lower triangular part of each matrix, which is identical as the upper triangular part, is removed for simplicity. Diagonal entries of each 

matrix, shown as the intersection of the surface with the diagonal plane, are estimated residual variances. Only traits with the first eight largest variance 

estimates of Residual-Covariate interaction (see Figure 2 right) are shown. Arrows point to higher values. 
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