Please use this identifier to cite or link to this item: https://hdl.handle.net/1959.11/9036
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEmelyanova, IVen
dc.contributor.authorDonald, Grahamen
dc.contributor.authorMiron, David Johnen
dc.contributor.authorHenry, DAen
dc.contributor.authorGarner, MGen
dc.date.accessioned2011-12-13T10:56:00Z-
dc.date.issued2009-
dc.identifier.citationEnvironmental Modeling and Assessment, 14(4), p. 449-465en
dc.identifier.issn1573-2967en
dc.identifier.issn1420-2026en
dc.identifier.urihttps://hdl.handle.net/1959.11/9036-
dc.description.abstractA probabilistic Bayesian method called weights of evidence (WofE) was used to develop a synthetic dataset of cattle farm locations at a national scale across Australia. The synthetic dataset was required for the modelling of livestock movements with a view to assessing biosecurity implications. The WofE method is based on the analysis of spatial relationships between evidential patterns with respect to an event, such as the actual location of a farm. The evidential patterns of cattle farms were derived from maps of land use, land tenure, drainage systems, roads, settlements and long-term averaged rainfall. These evidential patterns were used for delineating and ranking land areas suitable for cattle farming. For each evidential pattern statistics such as a positive weight, a negative weight and a contrast were calculated for estimating the degree of correlation between the evidential patterns and known farm locations. The integrated evidential patterns of known farms were then used for estimating posterior probabilities and splitting land into five different classes according to its suitability for farming.en
dc.languageenen
dc.publisherSpringer Netherlandsen
dc.relation.ispartofEnvironmental Modeling and Assessmenten
dc.titleProbabilistic Modelling of Cattle Farm Distribution in Australiaen
dc.typeJournal Articleen
dc.identifier.doi10.1007/s10666-008-9140-zen
dc.subject.keywordsEnvironmental Sciencesen
local.contributor.firstnameIVen
local.contributor.firstnameGrahamen
local.contributor.firstnameDavid Johnen
local.contributor.firstnameDAen
local.contributor.firstnameMGen
local.subject.for2008059999 Environmental Sciences not elsewhere classifieden
local.subject.seo2008969999 Environment not elsewhere classifieden
local.profile.schoolAdministrationen
local.profile.emailgdonald2@une.edu.auen
local.profile.emaildmiron@une.edu.auen
local.output.categoryC1en
local.record.placeauen
local.record.institutionUniversity of New Englanden
local.identifier.epublicationsrecordune-20111205-115056en
local.publisher.placeNetherlandsen
local.format.startpage449en
local.format.endpage465en
local.identifier.scopusid70349932524en
local.peerreviewedYesen
local.identifier.volume14en
local.identifier.issue4en
local.contributor.lastnameEmelyanovaen
local.contributor.lastnameDonalden
local.contributor.lastnameMironen
local.contributor.lastnameHenryen
local.contributor.lastnameGarneren
dc.identifier.staffune-id:gdonald2en
dc.identifier.staffune-id:dmironen
local.profile.orcid0000-0003-2157-5439en
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.profile.roleauthoren
local.identifier.unepublicationidune:9226en
dc.identifier.academiclevelAcademicen
dc.identifier.academiclevelAcademicen
local.title.maintitleProbabilistic Modelling of Cattle Farm Distribution in Australiaen
local.output.categorydescriptionC1 Refereed Article in a Scholarly Journalen
local.search.authorEmelyanova, IVen
local.search.authorDonald, Grahamen
local.search.authorMiron, David Johnen
local.search.authorHenry, DAen
local.search.authorGarner, MGen
local.uneassociationUnknownen
local.year.published2009en
Appears in Collections:Journal Article
Files in This Item:
2 files
File Description SizeFormat 
Show simple item record

SCOPUSTM   
Citations

10
checked on Dec 14, 2024

Page view(s)

1,262
checked on Aug 3, 2024
Google Media

Google ScholarTM

Check

Altmetric


Items in Research UNE are protected by copyright, with all rights reserved, unless otherwise indicated.